
TMS320C6x
C Source Debugger

User’s Guide

Literature Number: SPRU188D
January 1998

Printed on Recycled Paper

Running Title—Attribute Reference

ii

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright  1998, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This book tells you how to use the TMS320C6x C source debugger with the
following debugging tools to test and refine your code:

� Emulator
� Simulator
� Fast simulator

Each tool has its own version of the debugger. These versions operate almost
identically; however, the executable files that invoke them are very different.
Separate commands are provided for invoking each version of the debugger.

There are two debugger environments: the basic debugger environment and
the profiling environment.

� The basic debugger environment is a general-purpose debugging envi-
ronment. You can use standard data-management commands and run-
type commands to test and evaluate your code.

� The profiling environment is a special environment for collecting statistics
about code execution. You can use the profiling environment to identify
areas in your code where you want to improve performance.

In addition to the debugger environment in the emulator version of the debug-
ger, you can use the parallel debug manager (PDM). The PDM allows you to
control and coordinate multiple debuggers, giving you the flexibility and power
to debug your entire application for your multiprocessing system. The PDM
and its functions and features are described in this book.

Before you use this book, you should install the C source debugger and any
necessary hardware.

This book is meant to be used with the online help included with the C source
debugger. The online help provides you with information about the windows,
menu items, icons, and dialog boxes of the debugger interface. For informa-
tion on how to access the online help, see section 1.7 on page 1-14.

Notational Conventions

iv

Notational Conventions

This document uses the following conventions.

� The TMS320C6x family of devices is referred to as ’C6x.

� Debugger commands are not case sensitive; you can enter them in lower-
case, uppercase, or a combination. To emphasize this fact, commands are
shown throughout this user’s guide in both uppercase and lowercase.

� Program listings and examples are shown in a special font . Some
examples use a bold version to identify code, commands, or portions
of an example that you enter. Here is an example:

Command Result Displayed in the Command Window

whatis aai int aai[10][5];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the display area of the Command window.

� In syntax descriptions, the instruction or command is in a bold face, and
parameters are in italics. Portions of a syntax that are in bold should be
entered as shown; portions of a syntax that are in italics describe the kind
of information to be entered. Here is an example of a command syntax:

load object filename

load is the command. This command has one required parameter, indi-
cated by object filename.

� Square brackets ([and]) identify an optional parameter. If you use an op-
tional parameter, you supply the information specified within the brackets;
you do not enter the brackets themselves. Here is an example of a com-
mand that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

 Related Documentation From Texas Instruments

v Read This First

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here is an example of a list:

sound {on | off }

This provides two choices: sound on or sound off .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

Related Documentation From Texas Instruments

The following books describe the TMS320C6x and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments Litera-
ture Response Center at (800) 477–8924. When ordering, please identify the
book by its title and literature number.

TMS320C6x Assembly Language Tools User’s Guide (literature number
SPRU186) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for the ’C6x generation of devices.

TMS320C6x Optimizing C Compiler User’s Guide (literature number
SPRU187) describes the ’C6x C compiler and the assembly optimizer.
This C compiler accepts ANSI standard C source code and produces as-
sembly language source code for the ’C6x generation of devices. The as-
sembly optimizer helps you optimize your assembly code.

TMS320C62x/C67x CPU and Instruction Set Reference Guide (literature
number SPRU189) describes the ’C62x/C67x CPU architecture, instruc-
tion set, pipeline, and interrupts for these digital signal processors.

TMS320C6201/C6701 Peripherals Reference Guide (literature number
SPRU190) describes common peripherals available on the
TMS320C6201/C6701 digital signal processors. This book includes in-
formation on the internal data and program memories, the external
memory interface (EMIF), the host port, serial ports, direct memory
access (DMA), clocking and phase-locked loop (PLL), and the power-
down modes.

TMS320C62x/C67x Programmer’s Guide (literature number SPRU198)
describes ways to optimize C and assembly code for the
TMS320C62x/C67x DSPs and includes application program examples.

TMS320C62x/C67x Technical Brief (literature number SPRU197) gives an
introduction to the ’C62x/C67x digital signal processors, development
tools, and third-party support.

Related Documentation / Trademarks

vi

XDS51x Emulator Installation Guide (literature number SPNU070)
describes the installation of the XDS510 , XDS510PP , and
XDS510WS emulator controllers. The installation of the XDS511
emulator is also described.

Related Documentation

If you are an assembly language programmer and would like more information
about C or C expressions, you may find these books useful:

American National Standard for Information Systems—Programming
Language C X3.159-1989 , American National Standards Institute
(ANSI standard for C)

Programming in C , Kochan, Steve G., Hayden Book Company

The C Programming Language (second edition, 1988), by Brian W. Kernig-
han and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey

FCC Warning

This equipment is intended for use in a laboratory test environment only. It gen-
erates, uses, and can radiate radio frequency energy and has not been tested
for compliance with the limits of computing devices pursuant to subpart J of
part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other en-
vironments may cause interference with radio communications, in which case
the user at his own expense will be required to take whatever measures may
be required to correct this interference.

Trademarks

320 Hotline On-line is a trademark of Texas Instruments Incorporated.

PC is a trademark of International Business Machines Corporation.

SunOS and OpenWindows are trademarks of Sun Microsystems, Inc.

SPARCstation is trademark of SPARC International, Inc., but licensed exclu-
sively to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

Windows, Windows 95, and Windows NT are registered trademarks of Micro-
soft Corporation.

XDS, XDS510, XDS510PP, XDS510WS, XDS511 are trademarks of Texas In-
struments Incorporated.

X Window System is a trademark of the Massachusetts Institute of Tech-
nology.

 If You Need Assistance

vii Read This First

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32
Email: epic@ti.com

Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: dsph@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

 Contents

ix

Contents

1 Overview of the Code Development and Debugging System 1-1.
Provides an overview of the C source debugger, describes the code development environment,
and provides a brief overview of the debugging process. Also tells you how to access online
help.

1.1 Key Features of the Debugger 1-2.
1.2 About the C Source Debugger Interface 1-3.

Descriptions of the debugger windows and their contents 1-4.
1.3 Developing Code for the TMS320C6x 1-7.
1.4 Limited Versions of the Simulator 1-10.

Floating-point version of the simulator 1-10.
Fast version of the fixed-point simulator 1-10.
Debugger features not supported by the limited versions of the simulator 1-11.

1.5 About the Parallel Debug Manager (Emulator Only) 1-12.
1.6 Overview of the Debugging Process 1-13.
1.7 Accessing Online Help 1-14.

Accessing a list of help topics 1-14.
Accessing context-sensitive help 1-14.
Accessing help for debugger commands 1-15.

2 Getting Started With the Debugger 2-1.
Explains how to prepare your program for debugging and explains what you need to do before
invoking the debugger. Explains how to invoke the debugger, and summarizes the debugger
options. Describes the debugging modes and explains how to exit the debugger.

2.1 Preparing Your Program for Debugging 2-2.
Debugging optimized code 2-2.
Profiling optimized code 2-2.

2.2 Identifying Alternate Directories for the Debugger to Search (D_DIR) 2-3.
Setting up D_DIR for Windows operating systems 2-3.
Setting up D_DIR for SPARC and HPUX operating systems 2-3.

2.3 Identifying Directories That Contain Program Source Files (D_SRC) 2-4.
Setting up D_SRC for Windows operating systems 2-4.
Setting up D_SRC for SPARC and HPUX operating systems 2-4.

2.4 Setting Up Default Debugger Options (D_OPTIONS) 2-5.
Setting up D_OPTIONS for Windows operating systems 2-5.
Setting up D_OPTIONS for SPARC and HPUX operating systems 2-5.

Contents

x

2.5 Resetting the Emulator 2-6.
2.6 Invoking the Debuggers and the PDM 2-7.

Invoking a stand-alone debugger 2-7.
Invoking multiple debuggers (emulator only) 2-8.

2.7 Summary of Debugger Options 2-10.
Clearing the .bss section (–c option) 2-10.
Displaying the debugger on a different machine (–d option) 2-10.
Identifying a new configuration file (–f option) 2-11.
Identifying additional directories (–i option) 2-11.
Selecting big-endian format (–me option) 2-11.
Identifying the processor to be debugged (–n option) 2-11.
Identifying the port address (–p option) 2-12.
Entering the profiling environment (–profile option) 2-12.
Loading the symbol table only (–s option) 2-13.
Identifying a new initialization file (–t option) 2-13.
Loading without the symbol table (–v option) 2-13.
Ignoring D_OPTIONS (–x option) 2-13.

2.8 Debugging Modes 2-14.
Auto mode 2-14.
Assembly mode 2-15.
Mixed mode 2-16.
Restrictions associated with debugging modes 2-17.

2.9 Exiting the Debugger or the PDM 2-18.

3 Entering and Using Commands 3-1.
Tells you how to define your own command strings, enter operating system commands, and
enter commands using a batch file.

3.1 Defining Your Own Command Strings 3-2.
Defining an alias 3-3.
Defining an alias with parameters 3-3.
Editing or redefining an alias 3-4.
Deleting an alias 3-4.
Considerations for using alias definitions 3-4.

3.2 Entering Operating-System Commands From Within the Debugger 3-5.
Entering a single command from the debugger command line 3-5.
Entering several commands from a system shell 3-6.

3.3 Creating and Executing a Batch File 3-7.
Echoing strings in a batch file 3-7.
Executing commands conditionally in a batch file 3-8.
Looping command execution in a batch file 3-9.
Pausing the execution of a batch file 3-11.
Executing a batch file 3-11.

3.4 Creating a Log File to Reexecute a Series of Commands 3-12.

 Contents

xi Contents

4 Defining a Memory Map 4-1.
Contains instructions for setting up a memory map that enables the debugger to access target
memory correctly; includes hints about using a batch file to set up a memory map.

4.1 The Memory Map: What It Is and Why You Must Define It 4-2.
Potential memory map problems 4-2.

4.2 Creating or Modifying the Memory Map 4-3.
Adding a range of memory 4-3.
Creating a customized memory type 4-4.
Deleting a range of memory 4-6.
Modifying a defined range of memory 4-6.

4.3 Enabling Memory Mapping 4-7.
4.4 A Sample Memory Map 4-9.
4.5 Defining and Executing a Memory Map in a Batch File 4-10.

Defining a memory map in a batch file 4-10.
Executing a memory map batch file 4-11.

4.6 Returning to the Original Memory Map 4-12.
4.7 Using Multiple Memory Maps for Multiple Target Systems 4-13.
4.8 Simulating I/O Space (Simulator Only) 4-14.

Connecting an I/O port 4-14.
Disconnecting an I/O port 4-15.

4.9 Simulating External Interrupts (Simulator Only) 4-16.
Setting up your input file 4-16.
Connecting your input file to the interrupt pin 4-17.
Disconnecting your input file from the interrupt pin 4-18.
Listing the interrupt pins and connecting input files 4-18.

5 Loading and Displaying Code 5-1.
Tells you how to use the debugger modes to view the source files and how to load source files
and object files.

5.1 Loading and Displaying Assembly Language Code 5-2.
Loading an object file and its symbol table 5-2.
Loading an object file without its symbol table 5-3.
Loading a symbol table only 5-3.
Loading code while invoking the debugger 5-3.
Displaying portions of disassembly 5-4.
Displaying assembly source code 5-5.

5.2 Displaying C Code 5-6.
Displaying the contents of a text file 5-6.
Displaying a specific C function 5-7.
Displaying code beginning at a specific point 5-8.

Contents

xii

6 Running Code 6-1.
Describes the basic run commands and single-step commands, tells you how to halt program
execution, and discusses software breakpoints.

6.1 Defining the Starting Point for Program Execution 6-2.
6.2 Using the Basic Run Commands 6-4.

Running an entire program 6-4.
Running code up to a specific point in a program 6-5.
Running the code in the current C function 6-6.
Running code while disconnected from the target system (emulator only) 6-6.
Running code through breakpoints 6-6.
Resetting the simulator 6-7.
Resetting the emulator 6-7.

6.3 Single-Stepping Through Code 6-8.
Single-stepping through assembly language or C code 6-8.
Single-stepping through C code 6-9.
Continuously stepping through code 6-10.
Single-stepping through code and stepping over C functions 6-10.

6.4 Running Code Conditionally 6-11.
6.5 Benchmarking 6-12.
6.6 Halting Program Execution 6-13.

What happens when you halt the emulator 6-13.
6.7 Using Software Breakpoints 6-14.

Setting a software breakpoint 6-15.
Clearing a software breakpoint 6-17.
Clearing all software breakpoints 6-17.
Saving breakpoint settings 6-18.
Loading saved breakpoint settings 6-19.

7 Managing Data 7-1.
Describes the data-display windows and tells you how to edit data (memory contents, register
contents, and individual variables).

7.1 Where Data Is Displayed 7-2.
7.2 How the Emulator Displays Data for Load and Store Instructions 7-2.
7.3 Basic Commands for Managing Data 7-3.

Determining the type of a variable 7-3.
Evaluating an expression 7-3.

7.4 Basic Methods for Changing Data Values 7-5.
Editing data displayed in a window 7-5.
Editing data using expressions that have side effects 7-5.

7.5 Managing Data in Memory 7-7.
Changing the memory range displayed in a Memory window 7-7.
Opening an additional Memory window 7-8.
Displaying memory contents while you are debugging C 7-9.
Saving memory values to a file 7-10.
Filling a block of memory 7-11.

 Contents

xiii Contents

7.6 Managing Register Data 7-13.
Displaying register contents 7-13.
Accessing single-precision floating-point registers 7-16.
Accessing double-precision floating-point registers 7-17.

7.7 Managing Data in a Watch Window 7-18.
Displaying data in a Watch window 7-19.
Displaying additional data 7-20.
Deleting watched values 7-20.

7.8 Displaying Data in Alternative Formats 7-22.
Changing the default format for specific data types 7-22.
Changing the default format with data-management commands 7-24.

8 Profiling Code Execution 8-1.
Describes the profiling environment and tells you how to collect statistics about code execution.

8.1 Overview of the Profiling Environment 8-2.
8.2 Overview of the Profiling Process 8-3.

A profiling strategy 8-3.
8.3 Entering the Profiling Environment 8-4.
8.4 Defining Areas for Profiling 8-5.

Marking an area with a mouse 8-5.
Marking an area with a dialog box 8-8.
Disabling an area 8-10.
Reenabling a disabled area 8-11.
Unmarking an area 8-12.
Restrictions on profiling areas 8-12.

8.5 Defining a Stopping Point 8-15.
Setting a software breakpoint 8-15.
Clearing a software breakpoint 8-16.

8.6 Running a Profiling Session 8-17.
Running a full or a quick profiling session 8-17.
Resuming a profiling session that has halted 8-19.

8.7 Viewing Profile Data 8-20.
Viewing different profile data 8-21.
Sorting profile data 8-23.
Viewing different profile areas 8-24.
Interpreting session data 8-25.
Viewing code associated with a profile area 8-25.

8.8 Saving Profile Data to a File 8-27.
Saving the contents of the Profile window 8-27.
Saving all data for currently displayed areas 8-28.

Contents

xiv

9 Using Simulator Memory System Analysis 9-1.
Explains how to count or set breakpoints on various CPU events by using the analysis menu
and dialog box. Also describes the memory system analysis commands and provides a sample
batch file using these commands.

9.1 Major Functions of Simulator Memory System Analysis 9-2.
Set up event breakpoints 9-2.
Count system events 9-2.

9.2 Overview of the Analysis Process 9-3.
9.3 Enabling Memory System Analysis 9-4.
9.4 Defining the Conditions for Analysis 9-5.

Description of available system events 9-6.
Counting system events 9-6.
Setting event breakpoints 9-7.
Removing a defined count or break event 9-7.

9.5 Running Your Program 9-8.
9.6 Viewing the Analysis Data 9-9.

Interpreting the information in the Analysis Statistics window 9-9.
Resetting the event counters 9-9.

9.7 Summary of Memory System Analysis Commands 9-10.
event_enable (enable specified event) 9-10.
event_disable (disable specified event) 9-11.
event_break (set breakpoint on specified event) 9-11.
event_counter_start (count each occurrence of specified event) 9-11.
event_counter_reset (reset counter for specified event) 9-12.
event_reset (disable and clear configuration for all events) 9-12.
event_list (list configuration of all events) 9-12.

9.8 Entering Analysis Commands Through a Batch File 9-13.

10 Monitoring Hardware Functions With the Emulator Analysis Module 10-1.
Describes the analysis environment for the emulator and tells you how to set hardware break-
points.

10.1 Major Functions of the Analysis Module 10-2.
10.2 Overview of the Analysis Process 10-3.
10.3 Enabling the Analysis Module 10-4.
10.4 Defining the Conditions for Analysis 10-5.

Counting events 10-6.
Enabling the external counter 10-7.
Setting hardware breakpoints 10-8.
Setting up the EMU0/1 pins to set global breakpoints 10-9.

10.5 Running Your Program 10-10.
How to run the entire program 10-10.
How the Run Benchmarks (RUNB) command affects analysis 10-10.

10.6 Viewing the Analysis Data 10-11.
Interpreting the information in the Analysis Statistics window 10-11.

 Contents

xv Contents

10.7 Creating Customized Analysis Commands 10-12.
10.8 Summary of Analysis Pseudoregisters 10-13.

AEN (enable analysis) 10-13.
ABE (configure hardware breakpoints) 10-13.
ADR (program address breakpoint value) 10-13.
ACE (configure analysis counter events) 10-14.
ICNT (internal counter value) 10-14.
XCNT (external counter value) 10-14.
AST (analysis status) 10-14.

11 Using the Parallel Debug Manager 11-1.
Describes the parallel debug manager (PDM) for the TMS320C6x system, tells you how to in-
voke the PDM and individual debuggers, and describes execution-related commands. Also in-
cludes information about describing your target system in a configuration file.

11.1 Identifying Processors and Groups 11-2.
Assigning names to individual processors 11-2.
Organizing processors into groups 11-3.

11.2 Sending Debugger Commands to One or More Debuggers 11-6.
11.3 Running and Halting Code 11-7.

Halting processors at the same time 11-8.
Sending ESCAPE to all processors 11-8.
Finding the execution status of a processor or a group of processors 11-8.

11.4 Entering PDM Commands 11-9.
Executing PDM commands from a batch file 11-9.
Recording information from the PDM display area 11-10.
Controlling PDM command execution 11-10.
Echoing strings to the PDM display area 11-12.
Pausing command execution 11-13.
Using the command history 11-13.

11.5 Defining Your Own Command Strings 11-15.
11.6 Entering Operating-System Commands 11-16.
11.7 Understanding the PDM’s Expression Analysis 11-17.
11.8 Using System Variables 11-18.

Creating your own system variables 11-18.
Assigning a variable to the result of an expression 11-19.
Changing the PDM prompt 11-19.
Checking the execution status of the processors 11-20.
Listing system variables 11-20.
Deleting system variables 11-20.

11.9 Evaluating Expressions 11-21.

Contents

xvi

12 Summary of Commands 12-1.
Provides functional and alphabetical summaries of the basic debugger commands and the pro-
filing commands.
12-1
12.1 Functional Summary of Debugger Commands 12-2.

Managing multiple debuggers 12-3.
Changing modes 12-4.
Managing windows 12-4.
Customizing the screen 12-4.
Displaying files and loading programs 12-4.
Displaying and changing data 12-5.
Performing system tasks 12-6.
Managing breakpoints 12-7.
Memory mapping 12-7.
Running programs 12-8.
Profiling commands 12-9.
Memory system analysis commands (simulator only) 12-10.

12.2 Alphabetical Summary of Debugger and PDM Commands 12-11.
12.3 Summary of Profiling Commands 12-62.

13 Basic Information About C Expressions 13-1.
Many of the debugger commands accept C expressions as parameters. This chapter provides
general information about the rules governing C expressions and describes specific imple-
mentation features related to using C expressions as command parameters.
13.1 C Expressions for Assembly Language Programmers 13-2.
13.2 Using Expression Analysis in the Debugger 13-4.

Restrictions 13-4.
Additional features 13-4.

A What the Debugger Does During Invocation A-1.
In some circumstances, you may find it helpful to know the steps that the debugger goes
through during the invocation process; this appendix lists these steps.

B Describing Your Target System to the Debugger B-1.
Explains how to supply the information about your target configuration to the debugger.
B.1 Step 1: Create the Board Configuration Text File B-2.
B.2 Step 2: Translate the Configuration File to a Debugger-Readable Format B-5.
B.3 Step 3: Specify the Configuration File When Invoking the Debugger B-6.

C Debugger Messages C-1.
Describes progress and error messages that the debugger may display.
C.1 Associating Sound With Error Messages C-2.
C.2 Alphabetical Summary of Debugger Messages C-2.
C.3 Alphabetical Summary of PDM Messages C-22.
C.4 Additional Instructions for Expression Errors C-26.
C.5 Additional Instructions for Hardware Errors C-26.

D Glossary D-1.
Defines acronyms and key terms used in this book.

 Figures

xvii Contents

Figures

1–1 The Basic Debugger Display 1-3.
1–2 TMS320C6x Software Development Flow 1-7.
1–3 The PDM Environment 1-12.
2–1 Typical Assembly Display (for Auto Mode and Assembly Mode) 2-15.
2–2 Typical C Display (for Auto Mode Only) 2-16.
2–3 Typical Mixed Display (for Mixed Mode Only) 2-17.
4–1 Sample Memory Map for Use With a TMS320C6x Simulator 4-9.
7–1 The Default Memory Window 7-7.
7–2 Reordering Registers in the CPU Window Using the Drag-and-Drop Method 7-14.
8–1 An Example of the Profile Window 8-20.
8–2 Cycling Through the Profile Window Fields 8-22.
9–1 Enabling/Disabling the Analysis Interface 9-4.
9–2 Analysis Events Dialog Box 9-5.
9–3 Analysis Statistics Window Displaying an Ongoing Status Report 9-9.
10–1 Enabling/Disabling the Analysis Module 10-4.
10–2 Analysis Events Dialog Boxes 10-5.
10–3 EMU1 Pin Set Up to Trigger Out on Hardware Break Events 10-9.
10–4 Analysis Statistics Window Displaying an Ongoing Status Report 10-11.
11–1 Grouping Processors 11-3.

Tables

xviii

Tables

1–1 Summary of Debugger Window Descriptions 1-5.
2–1 Summary of Debugger Options 2-10.
3–1 Predefined Constants for Use With Conditional Commands 3-8.
7–1 Pseudoregister Names for Single-Precision Floating-Point Registers 7-16.
7–2 Pseudoregister Names for Double-Precision Floating-Point Registers 7-17.
7–3 Display Formats for Debugger Data 7-22.
7–4 Data Types for Displaying Debugger Data 7-23.
8–1 Debugger Commands That Can/Cannot Be Used in the Profiling Environment 8-4.
8–2 Using the Profile Marking Dialog Box to Mark Areas 8-9.
8–3 Disabling, Enabling, Unmarking, or Viewing Areas 8-13.
8–4 Types of Data Shown in the Profile Window 8-21.
9–1 Description of Analysis Counter Events 9-6.
9–2 Memory System Analysis Command Summary 9-10.
10–1 Description of Analysis Counter Events 10-6.
11–1 PDM Operators 11-17.
12–1 Marking areas 12-62.
12–2 Disabling marked areas 12-62.
12–3 Enabling disabled areas 12-63.
12–4 Unmarking areas 12-64.
12–5 Changing the profile window display 12-65.

1-1

Overview of the Code
Development and Debugging System

The C source debugger is an advanced programmer’s interface that helps you
to develop, test, and refine ’C6x C programs (compiled with the ’C6x optimizing
ANSI C compiler) and assembly language programs. The debugger is the in-
terface to the ’C6x simulator and the scan-based emulator.

This chapter gives an overview of the C source debugger, describes the code
development environment, and explains how you must prepare your program
for debugging. This chapter also describes the parallel debug manager (PDM)
for use with the ’C6x emulator.

You can access context-sensitive online help at any time during the debugging
process to explain the functions of the windows, dialog boxes, and menus of
the debugger interface. This chapter also explains how to access online help
and how to exit the debugger when you have completed your debugging ses-
sion.

Topic Page

1.1 Key Features of the Debugger 1-2.

1.2 About the C Source Debugger Interface 1-3.

1.3 Developing Code for the TMS320C6x 1-7.

1.4 Limited Versions of the Simulator 1-10.

1.5 Description of the Parallel Debug Manager (Emulator Only) 1-12.

1.6 Overview of the Debugging Process 1-13.

1.7 Accessing Online Help 1-14.

Chapter 1

Key Features of the Debugger

 1-2

1.1 Key Features of the Debugger

� Multilevel debugging . The debugger allows you to debug both C and as-
sembly language code. If you are debugging a C program, you can choose
to view only the C source, the disassembly of the object code created from
the C source, or both. You can also use the debugger as an assembly lan-
guage debugger and view the original assembly source code.

� Fully configurable graphical user interface. The C source debugger
separates code, data, and commands into manageable portions. The
graphical user interface is intuitive and follows the conventions used by
your windowing system.

� Comprehensive data displays. You can easily create windows for dis-
playing and editing the values of variables, arrays, structures, pointers—
any kind of data—in their natural format (float, int, char, enum, or pointer).
You can even display entire linked lists.

� On-screen editing. You can change any data value displayed in any win-
dow—just click and type.

� Automatic update. The debugger automatically updates information on
the screen, highlighting changed values.

� Dynamic profiling. In addition to the basic debugging environment, a se-
cond environment—the profiling environment—is available. The profiling
environment provides a method for collecting execution statistics about
specific areas in your code. This gives you immediate feedback on your
application’s performance and helps you identify bottlenecks within the
code.

� Analysis module. In addition to the basic debugger features, the ’C6x has
an analysis module on the chip that allows the emulator to monitor the op-
erations of your target system. This expands your debugging capabilities
beyond simple software breakpoints.

� All the standard features you expect in a world-class debugger. The
debugger provides you with complete control over program execution with
features like conditional execution and single-stepping (including single-
stepping into or over function calls). You can set or clear a breakpoint with
a click of the mouse. You can define a memory map that identifies the por-
tions of target memory that the debugger can access. The debugger can
execute commands from a batch file, providing you with an easy method
for entering often-used command sequences.

About the C Source Debugger Interface

1-3Overview of the Code Development and Debugging System

1.2 About the C Source Debugger Interface

The C source debugging interface improves productivity by allowing you to de-
bug a program in the language it was written in. You can choose to debug your
programs in C, assembly language, serial assembly, or all three.

The Texas Instruments advanced programmer’s interface follows the conven-
tions used by your windowing system, reducing learning time and eliminating
the need to memorize complex commands. A shortened learning curve and
increased productivity reduce the software development cycle, so you can get
to market faster.

Figure 1–1 identifies several features of the debugger display.

Figure 1–1. The Basic Debugger Display

Disassembly
display

C source display

Interactive command entry
with command history

Scrolling data displays
with on-screen editing

Toolbar icons let
you select com-
mands quickly

Context-sensitive
status bar

Pulldown menus
are available for
most tasks

Natural-format
data displays

Function call
traceback

About the C Source Debugger Interface

 1-4

Descriptions of the debugger windows and their contents

The debugger can show several types of windows. Each type of window
serves a specific purpose and has unique characteristics. Every window is
identified by a name in its upper left corner. For the File window, the debugger
displays the name of the file shown in the window instead of the word File.
There are eight different windows, divided into these general categories:

� Code-display windows display assembly language or C code. There are
three code-display windows:

� A File window displays any text file that you want to display; its main
purpose, however, is to display C source code. You can display multi-
ple File windows at one time.

� The Disassembly window displays the disassembly (assembly lan-
guage version) of memory contents.

� The Calls window identifies the current function and previous function
calls if you are debugging a C program.

� The Profile window displays statistics about code execution.

� Data-display windows are for observing and modifying various types of
data. There are three data-display windows:

� A Memory window displays the contents of a range of memory. You
can display multiple Memory windows to allow you to view different
sections of memory at one time.

� The CPU window displays the contents of ’C6x registers.

� A Watch window displays selected data such as variables, specific
registers, or memory locations. You can display multiple Watch win-
dows to allow you to view multiple variables, register, or memory loca-
tions at one time.

� The Command window provides an area for typing in commands and re-
entering commands and an area for displaying various types of informa-
tion, such as progress messages, error messages, or command output.

Table 1–1 summarizes the purpose of each window, how each window is
created, and in which debugging mode each window is visible.

About the C Source Debugger Interface

1-5Overview of the Code Development and Debugging System

Table 1–1. Summary of Debugger Window Descriptions

Window Purpose Created Mode

Calls Lists the current function, its caller,
and the caller’s caller, etc. for C
functions

� Automatically when you are dis-
playing C code

� With the CALLS command if you
previously closed the Calls win-
dow

� Auto
� Mixed

Command � Provides a command line for
entering commands

� Provides a display area for
echoing commands and dis-
playing command output, er-
rors, and messages

Automatically All

CPU Shows the contents of the ’C6x reg-
isters

Automatically All

Disassembly Displays the disassembly (or re-
verse assembly) of memory con-
tents

Automatically All

File � Displays C source files
� Displays assembly source files
� Displays text files
� Displays serial assembly files

assembly optimized with –g
option

� With the File→Open menu option
� Automatically when your pro-

gram executes C code, assembly
code, or serial assembly code as-
sembled with the –g assembler
option

� Auto
� Mixed

Memory Displays the contents of memory.
Reference addresses, determined
by the size of the window, are listed
in the first column.

� Automatically for the default
Memory window only

� With the MEM command and a
unique window name for addi-
tional Memory windows

All

Profile Displays statistics collected during
a profiling session

By entering the profiling environment:
Profile→Profile Mode

Mixed

Watch Displays the values of selected ex-
pressions, structures, arrays, or
pointers

� With the Setup→Watch Variable
menu option

� With the WA and DISP com-
mands

All

About the C Source Debugger Interface

 1-6

All of the windows have context menus that allow you to display or hide
information in a window and control how a window is displayed. To display a
context menu, follow these steps:

1) Move your pointer over a debugger window.

2) Click the right mouse button. This displays a context menu like the follow-
ing example:

Context menu

Each context menu option that is currently selected has a check mark () pre-
ceding it, and those that are unselected do not. Clicking an option toggles be-
tween selected and unselected.

Developing Code for the TMS320C6x

1-7Overview of the Code Development and Debugging System

1.3 Developing Code for the TMS320C6x

The ’C6x is well supported by a complete set of hardware and software devel-
opment tools, including a C compiler, an assembly optimizer, an assembler,
and a linker. Figure 1–2 illustrates the basic ’C6x code development flow.

Figure 1–2. TMS320C6x Software Development Flow

Assembler

Linker

Assembler
source

COFF
object
files

C compiler

Debugging
tools

TMS320C6x

C
source

files

Executable
COFF

file

Assembly-
optimized

file

Assembly
optimizer

Linear as-
sembly

Developing Code for the TMS320C6x

 1-8

Common object file format (COFF) allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1–2.

� The assembly optimizer allows you to write linear assembly code without
being concerned with the TMS320C6x pipeline structure or with assigning
registers. It assigns registers and uses loop optimization to turn linear as-
sembly into highly parallel assembly that takes advantage of software pi-
pelining.

See the TMS320C6x Optimizing C Compiler User’s Guide for more in-
formation.

� The C compiler accepts C source code and produces TMS320C6x as-
sembly language source code. A shell program , an optimizer , and an in-
terlist utility are included in the compiler package:

� The shell program enables you to compile, assemble, and link source
modules in one step.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interlists C source statements with assembly lan-
guage output to correlate code produced by the compiler with your
source code.

See the TMS320C6x Optimizing C Compiler User’s Guide for more in-
formation.

� The assembler translates assembly language source files into machine
language COFF object files.

See the TMS320C6x Assembly Language Tools User’s Guide for more in-
formation.

� The linker combines object files into a single executable COFF object
module. As it creates the executable module, it performs relocation and
resolves external references. The linker allows you to define your sys-
tem’s memory map and to associate blocks of code with defined memory
areas.

See the TMS320C6x Assembly Language Tools User’s Guide for more in-
formation.

� The main product of this development process is a module that can be
executed in a TMS320C6x target system .

Developing Code for the TMS320C6x

1-9Overview of the Code Development and Debugging System

� You can use debugging tools to refine and correct your code. Available
products include:

� An instruction-accurate and clock-accurate fixed-point software
simulator

� An instruction-accurate, limited floating-point software simulator
� A faster, limited version of the fixed-point simulator
� An XDS emulator

Limited Versions of the Simulator

 1-10

1.4 Limited Versions of the Simulator

This release provides you with three simulator versions:

� Fixed-point simulator for use with the TMS320C6201

� Limited, faster version of the fixed-point simulator for use with the
TMS320C6201

� Limited, floating-point simulator for use with the TMS320C6701

The fixed-point simulator provides you with full debugger functionality. The lim-
ited versions of the simulator allow you to do specialized tasks, but do not sup-
port the full range of debugger capabilities. The limited versions of the simula-
tor are separate executables, available on the following platforms:

� UNIX:
� Sun SPARC
� HP

� PC:
� Windows NT
� Windows 95

Floating-point version of the simulator

Use the floating-point version of the simulator with the TMS320C6701. The
floating-point version of the simulator supports the TMS320C67x instruction
set and is a separate executable.

For information on invoking the floating-point version of the simulator execut-
able, see page 2-7.

Fast version of the fixed-point simulator

The fast version of the fixed-point simulator simulates at almost 50 times the
rate of the standard fixed-point simulator. The fast simulator supports the com-
plete ’C6x instruction set as well as both big-endian and little-endian modes.

Use the fast simulator to quickly validate code when information such as cycle-
count accuracy is not critical.

For information on invoking the floating-point version of the simulator execut-
able, see page 2-7.

Limited Versions of the Simulator

1-11Overview of the Code Development and Debugging System

Debugger features not supported by the limited versions of the simulator

The floating-point version of the simulator and the fast version of the fixed-
point simulator do not support the following features of the debugger:

� Internal memory map checks

The simulator core for the limited simulators do not perform dynamic map
checks. The limited simulators assume that all memory is available.
Therefore, if your code accesses unmapped memory locations, the limited
simulators do not give you an error message.

� Internal program RAM as cache

The limited simulators do not allow you to configure Internal program RAM

as cache.

� On-chip data memory conflicts

The limited simulators cannot detect memory bank conflicts in on-chip

data memory.

� Simulation of memory-mapped I/O through file connects to memory

The limited simulators do not support the MC and MI commands.

� Random interrupts

The limited simulators do not allow you to generate random interrupts.

� On-chip peripheral registers

The limited simulators do not model any of the ’C6x peripherals.

� Accurate cycle-count

The cycle count of the limited simulators do not account for stalls due to
external accesses and memory bank conflicts.

� Analysis

The limited simulators do not support analysis capability. You cannot count
system events or set up breakpoints on system events while using either
of the limited versions of the simulator.

About the Parallel Debug Manager (Emulator Only)

 1-12

1.5 About the Parallel Debug Manager (Emulator Only)

The TMS320C6x emulation system is a true multiprocessing debugging sys-
tem. It allows you to debug your entire application by using the parallel debug
manager (PDM). The PDM is a command shell that controls and coordinates
multiple debuggers, providing you with the ability to:

� Create and control debuggers for one or more processors
� Organize debuggers into groups
� Send commands to one or more debuggers
� Synchronously run, step, and halt multiple processors in parallel
� Gather system information in a central location

The PDM is invoked and PDM commands are executed from a command shell
window under the host windowing system. From the PDM, you can invoke and
control debuggers for each of the processors in your multiprocessing system.

As Figure 1–3 shows, you can run multiple debuggers under the control of the
PDM.

Figure 1–3. The PDM Environment

CPU_E
debugger

CPU_D
debugger

CPU_C
debugger

PDM

CPU_A CPU_B
debugger debugger

CPU_x
debugger

Overview of the Debugging Process

1-13Overview of the Code Development and Debugging System

1.6 Overview of the Debugging Process

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that help you accomplish each step.

Once you have decided what changes must be made to your program,
exit the debugger, edit your source file, and return to Step 1.

Step 6

Prepare a C program or assem-
bly language program for de-
bugging.

See section 2.1, Preparing Your
Program for Debugging, page
2-2.

Step 1

Ensure that the debugger has a
valid memory map.

See Chapter 4, Defining a
Memory Map.

Load the program’s object file. See section 5.1, Loading and
Displaying Assembly Language
Code, page 5-2.

Run the loaded file. You can run
the entire program, run parts of
the program, or single-step
through the program.

See Chapter 6, Running Code.

Stop the program at critical
points and examine important
information.

See section 6.7, Using Software
Breakpoints, and Chapter 7,
Managing Data.

Step 2

Step 3

Step 4

Step 5

Accessing Online Help

 1-14

1.7 Accessing Online Help

Online help is available to provide information about menu options, dialog
boxes, debugger windows, and debugger commands.

Accessing a list of help topics

To display a list of help topics, follow these steps:

1) Open the list of help topics by using one of these methods:

� Click the Help Topics icon on the toolbar:

� From the Help menu, select Help Topics.

� From the command line, enter:

help

2) Double-click the topic that you want to view.

Accessing context-sensitive help

You can access context-sensitive help using the following methods:

� To find out about an item in the debugger display, follow these steps:

1) Click the Help icon on the toolbar:

This changes the pointer to a question mark.

2) Select the menu option or click on the item that you want more in-
formation about.

� To find out about a dialog box or a window, follow these steps:

1) Make the window or the dialog box active.

2) Press F1 .

For all dialog boxes, you can also click the Help button in that dialog box to
view context-sensitive help:

Accessing Online Help

1-15Overview of the Code Development and Debugging System

Accessing help for debugger commands

To find out about a specific debugger command, use the HELP command. The
syntax for this command is:

help debugger command

The HELP command opens a help topic that describes the debugger com-
mand.

2-1

Getting Started With the Debugger

Before or after you install the debugger, you can define environment variables
that set certain debugger parameters you normally use. When you use envi-
ronment variables, default values are set, making each individual invocation
of the debugger simpler because these parameters are automatically speci-
fied. When you invoke the debugger, you can use command-line options to
override many of the defaults that are set with environment variables. These
options are summarized in this chapter.

Once you have set up the environment variables and invoked the debugger,
you must select the correct debugging mode for your program. This chapter
describes these debugging modes and provides an overview of the debugging
process.

Topic Page

2.1 Preparing Your Program for Debugging 2-2.

2.2 Identifying Alternate Directories for the Debugger
 to Search (D_DIR) 2-3.

2.3 Identifying Directories That Contain Program Source
Files (D_SRC) 2-4.

2.4 Setting Up Default Debugger Options (D_OPTIONS) 2-5.

2.5 Resetting the Emulator 2-6.

2.6 Invoking the Debuggers and the PDM 2-7.

2.7 Summary of Debugger Options 2-10.

2.8 Debugging Modes 2-14.

2.9 Exiting the Debugger or the PDM 2-18.

Chapter 2

Preparing Your Program for Debugging

 2-2

2.1 Preparing Your Program for Debugging

Before you use the debugger, you must create an executable object file. To do
so, start with C source, assembly optimizer source, and/or assembly language
code. You can use the cl6x shell program to compile, assemble, and link your
source code, creating an executable object file. To be able to debug the object
file, you must use the –g shell option. The –g option generates symbolic de-
bugging directives that are used by the debugger.

If you want to profile the execution of the object file, you must use the –as shell
option. The –as option puts labels in the symbol table. Label definitions are
written to the COFF symbol table for use with symbolic debugging.

For more information about the cl6x shell program and its options and about
creating an executable object file for use with the debugger, see the
TMS320C6x Optimizing C Compiler User’s Guide.

Debugging optimized code

If you intend to debug optimized code, use the –g shell option with the –o shell
option. The –g option generates symbolic debugging directives that are used
by the debugger for C source debugging, but it disables many compiler opti-
mizations. When you use the –o option (which invokes the optimizer) with the
–g option, you turn on the maximum amount of optimization that is compatible
with debugging. The –o option applies only to C code, not to assembly.

If you have trouble debugging loops in your code, you can use the –mu shell
option to turn off software pipelining. Software-pipelined loops are sometimes
difficult to debug because the code is not presented serially.

Profiling optimized code

If you intend to profile optimized code, use the –mg shell option with the –g and
–o options. The –mg option allows you to profile optimized code by turning on
the maximum amount of optimization that is compatible with profiling. When
you combine the –g and –o options with the –mg option, all of the line directives
are removed except for the first one and the last one.

Identifying Alternate Directories for the Debugger to Search (D_DIR)

2-3Getting Started With the Debugger

2.2 Identifying Alternate Directories for the Debugger to Search (D_DIR)

The debugger uses the information you provide via the D_DIR environment
variable to locate the directory that contains the auxiliary files (such as
siminit.cmd or emuinit.cmd) that it needs.

Setting up D_DIR for Windows operating systems

To set the D_DIR environment variable for Windows� operating systems, use
this syntax:

SET D_DIR=pathname1[;pathname2 . . .]

For example, to set up a directory named tools_dir for auxiliary files on your
hard drive, enter:

SET D_DIR=c:\tools_dir

(Be careful not to precede the equal sign with a space.)

Setting up D_DIR for SPARC and HPUX operating systems

To set the D_DIR environment variable for Sparc� and HPUX� operating sys-
tems, use this syntax:

setenv D_DIR ” pathname”

If you are using SunOS�:

� For C shells:

setenv D_DIR ” pathname”

� For Bourne or Korn shells:

D_DIR=” pathname”
export D_DIR

(Be sure to enclose the directory name within quotes.)

Identifying Directories That Contain Program Source Files (D_SRC)

 2-4

2.3 Identifying Directories That Contain Program Source Files (D_SRC)

The debugger uses the information you provide via the D_SRC environment
variable to locate the directories that contain program source files that you
want to access from the debugger.

Setting up D_SRC for Windows operating systems

To set the D_SRC environment variable for a Windows operating system, use
this syntax:

SET D_SRC=pathname1[;pathname2 . . .]

For example, if your ’C6x programs were in a directory named source on drive
C, the D_SRC setup would be:

SET D_SRC=c:\source

(Be careful not to precede the equal sign with a space.)

Setting up D_SRC for SPARC and HPUX operating systems

To set the D_SRC environment variable for a Solaris or HPUX operating sys-
tem, use this syntax:

setenv D_SRC ” pathname1[;pathname2;...]”

If you are using SunOS:

� For C shells:

setenv D_SRC ” pathname1[;pathname2 . . .]”

� For Bourne or Korn shells:

D_SRC=” pathname”
export D_SRC

(Be sure to enclose the path names within one set of quotes.)

Setting Up Default Debugger Options (D_OPTIONS)

2-5Getting Started With the Debugger

2.4 Setting Up Default Debugger Options (D_OPTIONS)

Use the D_OPTIONS environment variable to set the debugger invocation
options that you want to use regularly. When you use the D_OPTIONS envi-
ronment variable, the debugger uses the default options and/or input file-
names that you name with D_OPTIONS every time you invoke the debugger.

Setting up D_OPTIONS for Windows operating systems

To set the D_OPTIONS environment variable for Windows operating systems,
use this syntax:

SET D_OPTIONS= [filename] [options]

(Be careful not to precede the equal sign with a space.)

The filename identifies the optional object file for the debugger to load, and
options lists the options you want to use at invocation. Section 2.7 on
page 2-10 summarizes the options that you can identify with D_OPTIONS.

Setting up D_OPTIONS for SPARC and HPUX operating systems

To set the D_OPTIONS environment variable for SPARC and HPUX operating
systems, use this syntax:

setenv D_OPTIONS ” [filename] [options]”

If you are using SunOS:

� For C shells:

setenv D_OPTIONS ” [filename] [options]”

� For Bourne or Korn shells:

D_OPTIONS=” [filename] [options]”
export D_OPTIONS

(Be sure to enclose the filename and options within one set of quotes.)

The filename identifies the optional object file for the debugger to load, and
options list the options you want to use at invocation. Section 2.7 summarizes
the options that you can identify with D_OPTIONS.

Resetting the Emulator

 2-6

2.5 Resetting the Emulator

You must reset the emulator before invoking the debugger. Reset can occur
only after you have powered up the target board. You can reset the emulator
by adding the following command to the autoexec.bat file:

emurst [-x] [-p number]

The –x option tells the emurst utility to ignore any options specified with the
D_OPTIONS environment variable. For more information about –x, see page
2-13.

The –p option number identifies the I/O port address that the debugger uses
for communicating with the emulator. For more information about –p, see page
2-12.

If the following message appears after the emulator is reset, you have a hard-
ware error:

CANNOT DETECT TARGET POWER

One of several problems can cause this error message to appear. Answer
each of the following questions about your system and restart your PC. Check:

� Is the emulator board installed snugly?
� Is the cable connecting your emulator and target system loose?
� Is the target power on?
� Is your target board getting the correct voltage?
� Is your emulator scan path uninterrupted?
� Is your port address set correctly?

� Ensure that the –p option’s parameter matches the I/O address de-
fined by your switch settings. For information about the switch set-
tings, see the XDS51x Emulator Installation Guide.

� Check to ensure that the address you entered as the –p option’s pa-
rameter does not conflict with the address space with another bus set-
ting. If you have a conflict, change the switches on your board to one of
the alternate settings. Modify the –p option’s parameter to reflect the
change in your switch settings.

Invoking the Debuggers and the PDM

2-7Getting Started With the Debugger

2.6 Invoking the Debuggers and the PDM

If you are using an emulator, there are two ways to invoke the debugger:

� You can invoke a stand-alone debugger that is not controlled by the paral-
lel debug manager (PDM).

� You can invoke several debuggers that are under control of the PDM.

If you are using a simulator, you can invoke only a standalone debugger.

This section describes how to invoke any version of the debugger and how to
invoke the PDM.

Invoking a stand-alone debugger

To invoke the debugger on a PC , use one of the following methods:

� Double-click the shortcut icon for the debugger.

� From the Start menu, select Run.... Enter the path for the debugger
executable file.

You can specify debugger options at invocation by modifying the command
line in the property sheet for your debugger icon.

To invoke the debugger on a SPARCstation , enter the following command
from a command shell:

sim6x | emu6x |sim67x | sim6xfast [filename] options

sim6x invokes the debugger for the fixed-point simulator.

emu6x invokes the debugger for the emulator.

sim67x invokes the debugger for the floating-point simulator.

 sim6xfast invokes the fast version of the fixed-point simulator.

filename is an optional parameter that names an object file that the
debugger loads into memory during invocation. The debug-
ger looks for the file in the current directory; if the file is not
in the current directory, you must supply the entire path-
name. If you do not supply an extension for the filename, the
debugger assumes that the extension is .out.

options supply the debugger with information on how to handle
files, manage the display, and input information.

Invoking the Debuggers and the PDM

 2-8

Invoking multiple debuggers (emulator only)

Before you can invoke multiple debuggers in a multiprocessing environment,
you must first invoke the parallel debug manager (PDM). The PDM is invoked
and PDM commands are executed from a command shell window within the
host windowing system. The format for invoking the PDM is:

pdm [–t filename]

Once the PDM is invoked, you will see the PDM command prompt (PDM:1>>)
and can begin entering commands.

When you invoke the PDM, it searches for a file called init.pdm. This file con-
tains initialization commands for the PDM. The PDM searches for the init.pdm
file in the current directory and in the directories you specify with the D_DIR
environment variable. If the PDM cannot find the initialization file, you will see
this message:

Cannot open take file.

Note:

The PDM environment uses the interprocess communication (IPC) features
of UNIX (shared memory, message queues, and semaphores) to provide
and manage communications between the different tasks. If you are not sure
whether the IPC features are enabled, see your system administrator. To use
the PDM environment, you should be familiar with the IPC status (ipcs) and
IPC remove (ipcrm) UNIX commands. If you use the UNIX task kill (kill) com-
mand to terminate execution of tasks, you will also need to use the ipcrm
command to terminate the shared memory, message queues, and sema-
phores used by the PDM.

When you debug a multiprocessing application, each processor must have its
own debugger. These debuggers can be invoked individually from the PDM
command line.

To invoke a debugger, use the SPAWN command. The syntax for SPAWN is:

spawn emu6x –n processor_name [filename] [options]

� emu6x is the executable that invokes the debugger.

To invoke a debugger, the PDM must be able to find the executable file for
that debugger. The PDM first searches the current directory and then
searches the directories listed with the PATH statement or path environ-
ment variable.

Invoking the Debuggers and the PDM

2-9Getting Started With the Debugger

� –n processor name supplies a processor name. You must use the –n op-
tion because the PDM uses processor names to identify the various de-
buggers that are running.

The processor name must match one of the names defined in your board
configuration file (see Appendix B, Describing Your Target System to the
Debugger). For example, to invoke a debugger for a ’C6x that you had de-
fined as CPU_A, you would enter:

spawn emu6x –n CPU_A

The processor name can consist of up to eight alphanumeric characters or
underscore characters and must begin with an alphanumeric character.
Note that the name is not case sensitive.

� filename is an optional parameter that names an object file that the debug-
ger loads into memory during invocation. The debugger looks for the file
in the current directory; if the file is not in the current directory, you must
supply the entire pathname.

If you do not supply an extension for the filename, the debugger assumes
that the extension is .out, unless you are using multiple extensions. You
must specify the entire filename if the filename has more than one exten-
sion.

� –options supply the debugger with additional information. See section 2.7,
page 2-10, for a summary table of debugger options.

Summary of Debugger Options

 2-10

2.7 Summary of Debugger Options

Table 2–1 summarizes the debugger options that you can use when invoking
a debugger (see section 2.6 on page 2-7 for information on how to invoke the
debugger with debugger options for your particular operating system) The rest
of this section describes these options in more detail. You can also specify file-
name and option information with the D_OPTIONS environment variable by
following the instructions in section 2.4 on page 2-5.

Table 2–1. Summary of Debugger Options

Option Brief Description Debugger Tools

–c Clear the .bss section All

–d machine name Display the debugger on different ma-
chine

All (X Window
System only)

–f filename Identify a new board configuration file Emulator

–i pathname Identify additional directories All

–me Select big-endian format All

–n device_name Identify device for debugging Emulator

–p port_address Identify the port address Emulator

–profile Enter the profiling environment All

–s filename Load the symbol table only All

–t filename Identify a new initialization file All

–v Load without the symbol table All

–x Ignore D_OPTIONS All

Clearing the .bss section (–c option)

The –c option clears the .bss section when the debugger loads code. Use this
option when you have C programs that use the RAM initialization model (speci-
fied with the –cr linker option described in the TMS320C6x Assembly Lan-
guage Tools User’s Guide).

Displaying the debugger on a different machine (–d option)

If you are using the X Window System, you can use the –d option to display
the debugger on a different machine than the one the program is running on.
The format for this option is:

–d machine_name:0

Summary of Debugger Options

2-11Getting Started With the Debugger

The :0 must follow the name of the machine on which you want to view the de-
bugger.

You can also specify a different machine by using the DISPLAY environment
variable (see your getting started guide for more information). If you use both
the DISPLAY environment variable and the –d option, –d overrides DISPLAY.

Identifying a new configuration file (–f option)

If you are using the emulator, the –f option allows you to specify a board config-
uration file to be used instead of board.dat. The format for this option is:

–f filename.dat

See Appendix B, Describing Your Target System to the Debugger, for infor-
mation about creating a board configuration file.

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files. You
can specify as many pathnames as necessary; use the –i option with each
pathname in this format:

–i pathname1 –i pathname2 –i pathname3...

Using –i is similar to using the D_SRC environment variable (see the informa-
tion about setting up the D_SRC environment variable in section 2.3 on page
2-4). If you name directories with both –i and D_SRC, the debugger first
searches through directories named with –i. The debugger can track a cumu-
lative total of 20 paths (including paths specified with –i, D_SRC, and the de-
bugger USE command).

Selecting big-endian format (–me option)

The –me option tells the debugger that the object file to be loaded is in big-
endian format. The default is little-endian format.

Identifying the processor to be debugged (–n option)

The –n option is valid only when you are using the emulator. The –n option al-
lows you to specify which particular ’C6x to debug when you are using the
spawn command to invoke multiple debuggers. The processor name must
match one of the names defined in your board.cfg file. The format for this op-
tion is:

–n device_name

Summary of Debugger Options

 2-12

Device names can be any string less than 32 characters long; however, they
cannot contain double quotes, a line feed, or a newline character. For more
information about the board.cfg file, see Appendix B, Describing Your Target
System to the Debugger.

Identifying the port address (–p option)

The –p option specifies which port the debugger uses to communicate with the
emulator. The –p option is valid only when you are using the emulator. The for-
mat for the –p option is:

–p port_address

The –p option identifies the I/O port address that the debugger uses for
communicating with the emulator. If you used the default switch settings, you
do not need to use the –p option. If you use nondefault switch settings, you
must use –p . For information on switch settings, see the XDS51x Installation
Guide; determine your switch settings, and replace port address with one of
these values:

If your Switch 1 is... and your Switch 2 is... Use this –p option...

On (default) On (default) 240 (optional)

On Off 280

Off On 320

Off Off 340

If you did not note your I/O switch settings, you can use a trial-and-error ap-
proach to find the correct –p setting. If you use the wrong setting, you will see
an error message when you invoke the debugger. (See the XDS51x Installa-
tion Guide for more information.)

If you are using a UNIX workstation, the –p option specifies the SCSI port the
debugger uses for communicating with the emulator. For more information,
see the XDS51x Installation Guide.

Entering the profiling environment (–profile option)

This option is valid only when you are using the simulator. The –profile option
allows you to bring up the debugger in a profiling environment so that you can
collect statistics about code execution. Only a subset of the basic debugger
features is available in the profiling environment. For more information about
the profiling environment, see Chapter 8.

You can also enter the profiling environment after invoking the debugger by
using the debugger’s Profile→Profile Mode menu option or PROFILE com-
mand within the debugger environment.

Summary of Debugger Options

2-13Getting Started With the Debugger

Loading the symbol table only (–s option)

The –s option allows you to load only a file’s symbol table (without the file’s ob-
ject code). This option is most useful in an emulation environment in which the
debugger cannot, or need not, load the object code (for example, if the code
is in ROM). In such an environment, loading the symbol table allows you to per-
form symbolic debugging and examine the values of C variables. The format
for this option is:

–s filename.out

Using this option is similar to loading a file by using the debugger’s File→Load
Symbols menu option or the SLOAD command within the debugger environ-
ment.

Identifying a new initialization file (–t option)

The –t option allows you to specify your own customized initialization com-
mand file to use instead of siminit.cmd, emuinit.cmd, or init.cmd. The format
for the –t option is:

–t filename.cmd

Using this option is similar to loading a batch file by using the debugger’s
File→Execute Take File... menu option or the TAKE command within the
debugger environment.

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the File→Load Program menu option or
the LOAD command within the debugger environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with the
D_OPTIONS environment variable (described in section 2.4 on page 2-5).

Debugging Modes

 2-14

2.8 Debugging Modes

The debugger has three debugging modes: auto, assembly, and mixed. Each
mode changes the debugger display by adding or hiding specific windows.
This section shows the default displays and the windows that the debugger au-
tomatically displays for these modes. These modes cannot be used within the
profiling environment; the Command, Profile, Disassembly, and File windows
are the only available windows in the profiling environment.

Auto mode

In auto mode, the debugger automatically displays whichever type of code is
currently running: assembly language or C. This is the default mode. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you see an as-
sembly display similar to the one in Figure 2–1. The Disassembly window
displays the reverse assembly of memory contents.

When you first invoke the debugger, you see a display similar to this.

� When the debugger is running C code or serial assembly compiled with
the –g option, you see a C display similar to the one in Figure 2–2. (This
assumes that the debugger can find your C source file to display in the File
window. If the debugger cannot find your source, it displays the disassem-
bly code only.)

When you are running assembly language code, the debugger automatically
displays a Memory window, the Disassembly window, the CPU register win-
dow, and the Command window. In addition to these windows, you can open
Watch windows and additional Memory windows.

When you are running C code, the debugger automatically displays the Com-
mand, Calls, and File windows. In addition to these windows, you can open
Watch windows.

Debugging Modes

2-15Getting Started With the Debugger

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you see a display similar to the one shown in Figure 2–1. When you are
in assembly mode, you always see the assembly display, regardless of wheth-
er C or assembly language is currently running.

In assembly mode, the debugger automatically displays a Memory window,
the Disassembly window, the CPU register window, and the Command win-
dow. In addition to these windows, you can open Watch windows and addi-
tional Memory windows.

Figure 2–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

�������

�������

�������

�������

�������

�������

�������

������������

Debugging Modes

 2-16

Figure 2–2. Typical C Display (for Auto Mode Only)

Mixed mode

Mixed mode is for viewing assembly language and C code at the same time.
Figure 2–3 shows the default display for mixed mode.

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes, regardless of whether you are currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the target device.

If you assemble your code with the –g assembler option, the debugger dis-
plays in the File window the contents of the assembly source file, in addition
to displaying the reverse assembly of memory contents in the Disassembly
window.

Debugging Modes

2-17Getting Started With the Debugger

Figure 2–3. Typical Mixed Display (for Mixed Mode Only)

��������

��������

��������

��������

��������

������������

Restrictions associated with debugging modes

The assembly language code that the debugger shows you in the Disassem-
bly window is the disassembly (reverse assembly) of the memory contents. If
you load object code into memory, the assembly language code in the Disas-
sembly window is the disassembly of that object code. If you do not load an
object file, the disassembly will not be very useful.

Some commands are valid only in certain modes, especially if a command ap-
plies to a window that is visible only in certain modes. In this case, entering the
command causes the debugger to switch to the mode that is appropriate for
the command. The following commands are valid only in the modes listed:

� The CALLS, DISP, FUNC, and FILE commands are valid only in auto and
mixed modes.

� The MEM command is valid only in assembly and mixed modes.

Exiting the Debugger or the PDM

 2-18

2.9 Exiting the Debugger or the PDM

To exit the debugger, use one of these methods:

� From File menu at the top of the debugger display, select Exit.

� Close the application window for the debugger.

� From the command line, enter:

quit

You can also enter QUIT from the command line of the PDM to quit all of the
debuggers (and also close the PDM).

3-1Entering and Using Commands

Entering and Using Commands

The debugger provides you with several methods for entering commands:

� From the toolbar
� From the menu bar
� With function keys
� From the command line
� From a batch file

This chapter describes how you can create aliases for commands and com-
mand sequences that you enter frequently, as well as information about using
a batch file or a log file for entering commands.

Topic Page

3.1 Defining Your Own Command Strings 3-2.

3.2 Entering Operating-System Commands From Within
the Debugger 3-5.

3.3 Creating and Executing a Batch File 3-7.

3.4 Creating a Log File to Reexecute a Series of Commands 3-12.

Chapter 3

Defining Your Own Command Strings

 3-2

3.1 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This process is called aliasing. Aliasing al-
lows you to define an alias name for the command(s) and then enter the alias
name as if it were a debugger command.

Note:

Creating aliased commands in PDM is different from creating aliased com-
mands in the debugger. For information about the PDM versions of the
ALIAS and UNALIAS commands, see page 11-15.

To use the aliasing feature, select Alias Commands from the Setup menu. This
displays the Alias Control dialog box:

List of
defined
aliases

To define an alias, enter an alias
name and command string and
click Apply

To delete an alias, select an alias
name and click Delete

Defining Your Own Command Strings

3-3Entering and Using Commands

Defining an alias

To define an alias, follow these steps:

1) From the Setup menu, select Alias Commands. This displays the Alias
Control dialog box.

2) In the Name field, enter a name for the alias.

3) In the Command string field, enter the command string that you want to
associate with the alias name. If you want to associate multiple commands
with the alias, separate the commands with a semicolon.

Enter the command string that you want
to associate with the alias nameEnter a name for the alias

4) Click Apply.

5) Click OK to close the Alias Control dialog box.

You can include a defined alias name in the command string of another alias
definition.

Defining an alias with parameters

The command string that you use to define an alias can include parameter vari-
ables for which you supply the values when you use the alias. Use a percent
sign and a number (%1) to represent each parameter. Use consecutive num-
bers (%1, %2, %3), unless you plan to reuse the same parameter value for
multiple commands.

For example, suppose that every time you filled an area of memory, you also
wanted to display that block in the Memory window. You could set up the follow-
ing alias:

Defining Your Own Command Strings

 3-4

Once you define this alias, you could enter the following from the command
line:

mfil 0x808020,0x18,0x1122

In this example, the first value (0x808020) is substituted for the first FILL pa-
rameter and the MEM parameter (%1). The second and third values are sub-
stituted for the second and third FILL parameters (%2 and %3).

Editing or redefining an alias

To edit or redefine an alias, follow these steps:

1) From the Setup menu, select Alias Commands. This displays the Alias
Control dialog box.

2) From the list of aliases at the top of the dialog box, select the alias that you
want to edit or redefine.

3) In the Name and Command string fields, make the appropriate changes.

4) Click Apply.

5) Click OK to close the Alias Control dialog box.

Deleting an alias

To delete an alias, follow these steps:

1) From the Setup menu, select Alias Commands. This displays the Alias
Control dialog box.

2) From the list of aliases at the top of the dialog box, select the alias that you
want to delete.

3) Click Delete.

4) Click OK to close the Alias Control dialog box.

Considerations for using alias definitions

Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file. Use the ALIAS command, as described on
page 12-14.

Individual commands within a command string are limited to an expanded
length of 132 characters. The expanded length of the command includes the
length of any substituted parameter values.

Entering Operating-System Commands From Within the Debugger

3-5Entering and Using Commands

3.2 Entering Operating-System Commands From Within the Debugger

The debugger provides a simple method for entering operating-system
commands without explicitly exiting the debugger environment. To do this, use
the SYSTEM command. The format for this command is:

system [operating-system command [, flag]]

The SYSTEM command behaves in one of two ways, depending on whether
or not you supply an operating-system command as a parameter:

� If you enter the SYSTEM command with an operating-system command
as a parameter, then you stay within the debugger environment.

� If you enter the SYSTEM command without parameters, the debugger
opens a system shell. This means that the debugger blanks the debugger
display and temporarily exits to the operating-system prompt.

Use the first method when you have only one command to enter; use the
second method when you have several commands to enter.

Entering a single command from the debugger command line

If you need to enter only a single operating-system command, supply it as a
parameter to the SYSTEM command. For example, if you want to copy a file
from another directory into the current directory, enter:

system copy a:\backup\sample.c sample.c

If the operating-system command produces a display (such as a message),
the debugger blanks the upper portion of the debugger display to show the in-
formation. In this situation, you can use the flag parameter to tell the debugger
whether or not it should hesitate after displaying the results of the operating-
system command. The flag parameter can be 0 or 1:

0 The debugger immediately returns to the debugger environment after the
last item of information is displayed.

1 The debugger does not return to the debugger environment until you
enter:

exit .

(This is the default.)

Entering Operating-System Commands From Within the Debugger

 3-6

In the preceding example, the debugger would open a system shell to display
the following message:

1 File(s) copied

The message would be displayed until you entered exit at the command
prompt in the system shell.

If you wanted the debugger to display the message and then return immediate-
ly to the debugger environment, you could enter the command in this way:

system copy a:\backup\sample.c sample.c,0

Entering several commands from a system shell

If you need to enter several commands, enter the SYSTEM command without
parameters. The debugger opens a system shell and displays the operating-
system prompt. You can enter any number of operating-system commands,
one at a time, following each with a return.

When you are finished entering commands and are ready to return to the
debugger environment, enter:

exit

For information about the PDM version of the SYSTEM command, see page
11-16.

Creating and Executing a Batch File

3-7Entering and Using Commands

3.3 Creating and Executing a Batch File

You can create a batch file for several commands that you want to enter at one
time. A batch file is useful for tasks such as defining aliases that you want to
reuse, defining your memory map, setting up your screen configuration, load-
ing object code, or any other task that you want to do each time you invoke the
debugger.

You can create the batch file in any text editor. For each debugger command
that you include in the batch file, use the same syntax that you would use if you
were entering the command from the debugger’s command line. Example 3–1
shows a sample batch file that you can create.

You can set up a batch file to call another batch file; they can be nested in this
manner up to ten deep.

Example 3–1. Sample Batch File for Use With the Debugger

echo Loading object code
load testcode.out

echo Loading screen configuration
sconfig myconfig.clr

echo Defining aliases
alias restrun, ”restart; run”
alias wavars, ”wa pc; wa i; wa j”

Echoing strings in a batch file

When executing a batch file, you can display a string to the Command window
by including the ECHO command in your batch file. The syntax for the com-
mand is:

echo string

This displays the string in the display area of the Command window.

For example, you might want to document what is happening during the
execution of a certain batch file. To do this, you could use a line such as the
following one in your batch file to indicate that you are creating a new memory
map for your device:

echo Creating new memory map

(Notice that the string is not enclosed in quotes.)

Creating and Executing a Batch File

 3-8

When you execute the batch file, the following message appears:

.

.

.
Creating new memory map
.
.
.

Any leading blanks in your string are removed when the ECHO command is
executed.

For more information about the PDM version of the ECHO command, see
page 11-12.

Executing commands conditionally in a batch file

To execute debugger commands conditionally in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger commands
[else
debugger commands]
endif

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. The ELSE portion of the com-
mand is optional. (See Chapter 13, Basic Information About C Expressions,
for more information.)

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 3–1 shows the constants and
their corresponding tools.

Table 3–1. Predefined Constants for Use With Conditional Commands

Constant Debugger Tool

$$EMU$$ Emulator

$$SIM$$ Simulator

One way you can use these predefined constants is to create an initialization
batch file that works for any debugger tool. This is useful if you are using, for
example, both the emulator and the simulator. To do this, you can set up a
batch file such as the following (make the appropriate modifications for UNIX).

Creating and Executing a Batch File

3-9Entering and Using Commands

if $$EMU$$
echo Invoking initialization batch file for emulator.
use .\emu6x
take emuinit.cmd
.
.
.
endif

if $$SIM$$
echo Invoking initialization batch file for simulator.
use .\sim6x
take siminit.cmd
.
.
.
endif
.
.
.

In this example, the debugger executes only the initialization commands that
apply to the debugger tool that you invoke.

The IF/ELSE/ENDIF command works with the following conditions:

� You can use conditional and looping commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You cannot nest conditional and looping commands within the same batch
file.

See Controlling PDM command execution, page 11-10, for more information
about the PDM versions of the IF and LOOP commands.

Looping command execution in a batch file

To set up a looping situation to execute debugger commands in a batch file,
use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger commands
endloop

These looping commands evaluate using the same method as the conditional
RUN command expression. (See Chapter 13, Basic Information About C Ex-
pressions, for more information.)

Creating and Executing a Batch File

 3-10

If you use an expression that is not Boolean, the debugger evaluates the ex-
pression as a loop count. For example, if you wanted to execute a sequence
of debugger commands ten times, you would use the following code se-
quence:

loop 10
step
.
.
.
endloop

The debugger treats the 10 as a counter and executes the debugger com-
mands ten times.

If you use a Boolean expression, the debugger executes the commands re-
peatedly as long as the expression is true. This type of expression uses one
of the following operators as the highest precedence operator in the expres-
sion:

> > = <
< = = = ! =
&& | | !

For example, if you want to trace some register values continuously, you can
set up a looping expression like this one:

loop !0
step
? PC
? A0
endloop

The LOOP/ENDLOOP command works with the following conditions:

� You can use conditional and looping commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You cannot nest conditional and looping commands within the same batch
file.

See Controlling PDM command execution, page 11-10, for more information
about the PDM versions of the IF and LOOP commands.

Creating and Executing a Batch File

3-11Entering and Using Commands

Pausing the execution of a batch file

You can pause the debugger or PDM while running a batch file or executing
a flow control command. Pausing is especially helpful in debugging the
commands in a batch file. To do so, include the PAUSE command in the batch
file:

pause

When the debugger or PDM reads this command in a batch file or during a flow
control command segment, the debugger/PDM stops execution and displays
a dialog box. To continue processing, click OK or press .

Executing a batch file

Once you create a batch file, you can tell the debugger to read and execute
or take its commands from the batch file (also known as a take file). To do so,
follow these steps:

1) From the File menu, select Execute Take File. This displays the Open Take
File dialog box:

2) Select the file that you want to execute. To do so, you might need to change
the working directory.

3) Click Open.

This causes the debugger to read and execute the commands in the batch file.
To halt the debugger’s execution of a batch file, press ESC .

Creating a Log File to Reexecute a Series of Commands

 3-12

3.4 Creating a Log File to Reexecute a Series of Commands

The information shown in the display area of the Command window can be
written to a log file. The log file is a system file that contains commands you
have entered from the command line, from the toolbar, from the menus, or with
function keys. The log file also contains the results from commands and error
or progress messages. The debugger automatically precedes all error or prog-
ress messages and command results with a semicolon to turn them into com-
ments. This way, you can reexecute the commands in your log file by using the
File→Execute Take File menu option. For information about creating a log file
in PDM, see page 11-10. You can view the log file with any text editor.

To begin a recording session, follow these steps:

1) From the File menu, select Open Log File. This displays the Open Log File
dialog box:

Enter a name for the log file. Use a .log extension.

Select a directory for saving the file.

Select whether to append or overwrite an existing log file.

2) Select the directory where you want the file to be saved.

Creating a Log File to Reexecute a Series of Commands

3-13Entering and Using Commands

3) In the File name field, enter a name for the log file. Use a .log extension
to identify the file as a log file.

4) Click Open.

5) If the file that you want to use already exists, select that file, then select
one of the following actions in the File access field:

� Append to add the log information to an existing file
� Overwrite to write over the contents of an existing file

6) Click Open.

The debugger records all commands that you enter from the command line,
from the toolbar, from the menus, or with function keys.

To end the recording session, from the File menu, select Close Log File.

4-1Defining a Memory Map

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and cannot access.

Topic Page

4.1 The Memory Map: What It Is and Why You Must Define It 4-2.

4.2 Creating or Modifying the Memory Map 4-3.

4.3 Enabling Memory Mapping 4-7.

4.4 A Sample Memory Map 4-9.

4.5 Defining and Executing a Memory Map in a Batch File 4-10.

4.6 Returning to the Original Memory Map 4-12.

4.7 Using Multiple Memory Maps for Multiple Target Systems 4-13.

4.8 Simulating I/O Space (Simulator Only) 4-14.

4.9 Simulating External Interrupts (Simulator Only) 4-16.

Chapter 4

The Memory Map: What It Is and Why You Must Define It

 4-2

4.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and cannot
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

Note:

When the debugger compares memory accesses against the memory map,
it performs this checking in software, not hardware. The debugger cannot
prevent your program from attempting to access nonexistent memory.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger enables you to modify the default memory map or define a new
memory map interactively (as described in section 4.2 on page 4-3) or by
defining the memory map in a batch file (see section 4.5 on page 4-10).

Potential memory map problems

You may experience these problems if the memory map is not correctly
defined and enabled:

� Accessing invalid memory addresses. If you do not supply a batch file
containing memory-map commands, the debugger is initially unable to ac-
cess any target memory locations. Invalid memory addresses and their
contents are displayed in red in the data-display windows by default.

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
memory map. If you attempt to access an undefined or protected area, the
debugger displays an error message.

� Loading a COFF file with sections that cross a memory range. Be sure
that the map ranges you specify in a COFF file match those that you de-
fined in a batch file or with the Memory Map Control dialog box. Alterna-
tively, you can turn memory mapping off during a load by disabling memory
mapping (described in section 4.3 on page 4-7). When mapping is off,
you can still access memory locations.

Note:

If the emulator accesses an illegal or reserved memory location, it posts an
error in the EMIF (external memory interface) control register and returns 0
as the data.

Creating or Modifying the Memory Map

4-3Defining a Memory Map

4.2 Creating or Modifying the Memory Map

To identify valid ranges of target memory, select Mapping from the Memory
menu. This displays the Memory Map Control dialog box:

List of defined
memory ranges

Enter the starting address of a memory range.

Enter the length of the memory range.

Select a memory type to identify
the read/write characteristics of the
memory range.

Adding a range of memory

To add a range of memory, follow these steps:

1) From the Memory menu, select Mapping. This displays the Memory Map
Control dialog box.

2) In the Start field, enter the starting address for a memory range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label. If you want to specify a hex ad-
dress, be sure to prefix the address number with 0x; otherwise, the debug-
ger treats the number as a decimal address.

3) In the Length field, enter the length of the memory range. The length can
be any C expression.

Creating or Modifying the Memory Map

 4-4

4) In the Attribute field, select a memory type to identify the read/write char-
acteristics of the memory range.

5) Click Apply.

6) Click OK.

The following restrictions apply to identifying usable memory ranges:

� A new memory range cannot overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range.

� Be sure that the map ranges that you specify in a COFF file match those
that you define with the Memory Map Control dialog box.

� The origin and length values for a range that you define with the MEMORY
directive in your linker command file must match the Start and Length val-
ues for the same range in the Memory Map Control dialog box.

� The debugger caches memory that is not defined as a port type (INPORT,
OUTPORT, or IOPORT). For ranges that you do not want cached, be sure
to map them as ports.

Creating a customized memory type

The Attribute drop list in the Memory Map Control dialog box allows you to se-
lect from several predefined memory types such as RAM or ROM. If the prede-
fined memory types do not apply to your memory range, you can create a cus-
tomized memory type.

To create a customized memory type:

1) From the Memory menu, select Mapping. This displays the Memory Map
Control dialog box.

2) In the Start field, enter the starting address for the memory range you want
to customize. This parameter can be an absolute address, any C expres-
sion, the name of a C function, or an assembly language label. If you want
to specify a hex address, be sure to prefix the address number with 0x;
otherwise, the debugger treats the number as a decimal address.

3) In the Length field, enter the length of the memory range. The length can
be any C expression.

Creating or Modifying the Memory Map

4-5Defining a Memory Map

4) From the Attribute drop list, select Custom.... The Memory Attributes dia-
log box appears.

List of defined
memory types

List of basic
memory types

5) From the Basic Types column, select the individual memory attributes that
you want to apply to the memory range that you are adding.

Mnemonic Basic Memory Type

R Readable

W Writable

P I/O port

EX External

TX Text

SH Shared

6) Click OK. This closes the Memory Attributes dialog box and applies the
customized memory attributes to the memory range in the Memory Map
Control dialog box.

7) Add other memory ranges as needed, then click OK to close the Memory
Map Control dialog box.

Creating or Modifying the Memory Map

 4-6

Deleting a range of memory

To delete a range of memory, follow these steps:

1) Select Mapping from the Memory menu. This displays the Memory Map
Control dialog box.

2) From the list of defined ranges at the top of the dialog box, select the range
that you want to delete.

3) Click Delete.

4) Click OK.

Before you can delete a memory address used as a simulated I/O port from
the memory map, you must disconnect the address. See the Disconnecting
an I/O port section on page 4-15 for information.

Modifying a defined range of memory

To modify a defined range of memory, follow these steps:

1) Select Mapping from the Memory menu. This displays the Memory Map
Control dialog box.

2) From the list of defined ranges at the top of the dialog box, select the range
that you want to modify.

3) In the Memory Type, Start, Length, Attribute and/or Wait states fields,
make the appropriate changes.

4) Click Apply.

5) Click OK.

Enabling Memory Mapping

4-7Defining a Memory Map

4.3 Enabling Memory Mapping

By default, mapping is enabled when you invoke the debugger. In some
instances, you may want to explicitly enable or disable memory. To do so, open
the Memory Map Control dialog box. From the Memory menu, select Mapping.
In the lower left corner of the dialog box, there is an option for disabling memory
mapping:

Click here to enable/disable memory mapping

� Memory mapping is enabled when the box is empty:

� Memory mapping is disabled when the box is checked:

Disabling memory mapping can cause bus fault problems in the target be-
cause the debugger may attempt to access nonexistent memory.

When you disable memory mapping with the simulator, you can still access
memory locations. However, the debugger does not prevent you from acces-
sing memory locations that you have not defined as valid in the memory map.

Enabling Memory Mapping

 4-8

When you disable memory mapping with the emulator, only memory linked to
the text section is downloaded over the program bus.

Note:

When memory mapping is enabled, you cannot:

� Access memory locations that are not listed in the Memory Control dia-
log box

� Modify the contents of memory areas that are defined as read only or
protected

If you attempt to access memory in these situations, the debugger displays
this message in the display area of the Command window:

Error in expression

A Sample Memory Map

4-9Defining a Memory Map

4.4 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it is convenient to define the memory map in the initialization batch files.
Figure 4–1 (a) shows the memory map that is defined in the initialization batch
file that accompanies the ’C6x simulator. You can use the file as is, edit it, or
create your own memory map batch file to match your own configuration. You
can also define the memory map after you have invoked the debugger with the
Memory Map Control dialog box (see section 4.2 on page 4-3).

If you are defining the memory map in a batch file, you can use MA (map add)
commands to define valid memory ranges and identify the read/write charac-
teristics of the memory ranges. (For more information about the MA command,
see section 4.5 on page 4-10.) By default, mapping is enabled when you
invoke the debugger. Figure 4–1 (b) illustrates the memory map defined by the
MA commands in Figure 4–1 (a).

Figure 4–1. Sample Memory Map for Use With a TMS320C6x Simulator

(a) Memory map commands (b) Memory map for TMS320C6x local memory

0x8000_0000
to 0x8000_ffff

0x0300_0000
to 0x03ff_ffff

0x0200_0000
to 0x02ff_ffff

0x0180_0000
to 0x016f_ffff

0x0140_0000
to 0x0140_ffff

0x0100_0000
to 0x013f_ffff

0x0000_0000
to 0x00ff_ffff

ma 0x00000000, 0x01000000, RAM
ma 0x01000000, 0x00400000, RAM
ma 0x01400000, 0x00010000, RAM
ma 0x01800000, 0x00400000, RAM
ma 0x02000000, 0x01000000, RAM
ma 0x03000000, 0x01000000, RAM
ma 0x80000000, 0x00010000, RAM

CE0 External Memory

CE1 External Memory

Internal Program Memory

Internal Peripheral Space

CE2 External Memory

CE3 External Memory

Internal Data Memory

Defining and Executing a Memory Map in a Batch File

 4-10

4.5 Defining and Executing a Memory Map in a Batch File

You can create a batch file that contains memory map commands. This pro-
vides you with a convenient way to define a memory for each debugging ses-
sion. You can define the memory map in the initialization batch file, which
executes when you invoke the debugger, or you can define the memory map
in a separate batch file of your own that you can execute using the File→
Execute Take File menu option or the –t debugger option.

Defining a memory map in a batch file

To define a memory map in a batch file, use the MA command. The syntax for
the MA command is:

ma address, length, type

� The address parameter defines the starting address of a range. This
parameter can be an absolute address, any C expression, the name of a
C function, or an assembly language label. If you want to specify a hex ad-
dress, be sure to prefix the address number with 0x; otherwise, the
debugger treats the number as a decimal address.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory . . .
Use this keyword as the type
parameter . . .

Read-only memory R or ROM

Write-only memory W or WOM

Read/write memory R|W or RAM

Read-only program memory PROM

Read/write program memory PRAM

No-access memory PROTECT

Input port INPORT or P|R

Output port OUTPORT or P|W

Input/output port IOPORT or P|R|W

The memory ranges that you define have the same restrictions as those de-
fined for the Memory→Mapping menu option described in section 4.2 on
page 4-3.

Defining and Executing a Memory Map in a Batch File

4-11Defining a Memory Map

Executing a memory map batch file

To execute the batch file, use one of these methods:

� Use the File→Execute Take File... menu option from within the debugger
environment.

� Use the –t debugger option to specify the batch file when you invoke the
debugger. For more information, see page 2-13.

� Use the TAKE command. For more information, see section 3.3, Creating
and Executing a Batch File, on page 3-7.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) It checks to see whether you have used the –t debugger option. The –t op-
tion allows you to specify a batch file other than the initialization batch file
shipped with the debugger. If it finds the –t option, the debugger reads and
executes the specified file.

2) If you do not use the –t option, the debugger looks for the default initializa-
tion batch file. The batch filename for the simulator is called siminit.cmd.
The batch filename for the emulator is called emuinit.cmd. If the debugger
finds the proper initialization batch file, it reads and executes the file.

3) If the debugger does not find the –t option or the initialization batch file, it
looks for a file called init.cmd.

This search mechanism allows you to have a single initialization batch file
that works for more than one debugger tool. To set up this file, you can use
the IF/ELSE/ENDIF commands (for more information, see Executing
commands conditionally in a batch file on page 3-8) to indicate which
memory map applies to each tool. If the debugger finds the file, it reads and
executes the file.

Returning to the Original Memory Map

 4-12

4.6 Returning to the Original Memory Map

If you modify the memory map during a debugging session, you may want to
go back to the original memory map without quitting and reinvoking the debug-
ger. You can do this by resetting the memory map and then using the
File→Execute Take File menu option to read in your original memory map
from a batch file.

Suppose, for example, that you set up your memory map in a batch file named
mem.map. You can enter these commands to go back to this map:

1) From the command line enter, mr to reset the memory map.

2) From the File menu, select Execute Take File.

3) From the Open Take File dialog box, select mem.map to reread the default
memory map.

The MR command resets the memory map. (You could put the MR command
in the batch file, preceding the commands that define the memory map.) The
File→Execute Take File menu option tells the debugger to execute commands
from the specified batch file.

Using Multiple Memory Maps for Multiple Target Systems

4-13Defining a Memory Map

4.7 Using Multiple Memory Maps for Multiple Target Systems

If you are debugging multiple applications, you may need a memory map for
each target system. Here is the simplest method for handling this situation.

1) Let the initialization batch file define the memory map for one of your appli-
cations.

2) Create a separate batch file that defines the memory map for the addition-
al target system. The filename is unimportant, but for the purposes of this
example, assume that the file is named filename.x. The general format of
this file’s contents is:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

This sequence of commands resets the memory map, defines a new
memory map, and enables mapping. (Of course, you can include any oth-
er appropriate commands in this batch file.)

3) Invoke the debugger as usual.

4) The debugger reads the initialization batch file during invocation. Before
you begin debugging, read in the commands from the new batch file using
the File→Execute Take File menu option.

This redefines the memory map for the current debugging session.

You can also use the –t option when you invoke the debugger instead of the
File→Execute Take File menu option. The –t option allows you to specify a new
batch file to be used instead of the default initialization batch file.

Simulating I/O Space (Simulator Only)

 4-14

4.8 Simulating I/O Space (Simulator Only)

Note:

In the fixed-point simulator (sim62x) only external memory can be used for
simulating I/O space. Simulating I/O space is not supported by the fast ver-
sion of the fixed-point simulator (sim62xfast) or the floating-point version of
the simulator (sim67x).

In addition to adding memory ranges to the memory map, you can use the
Memory→Mapping menu option to add I/O ports to the memory map. Then,
by connecting to the port address, the debugger simulates external I/O cycle
reads and writes by allowing you to read data in from a file and/or write data
out to a file.

Connecting an I/O port

To connect a port to an input or output file, follow these steps:

1) On the command line, enter mc . This displays the Connect port to file
dialog box:

2) In the Port Address field, enter the address where you want to simulate an
I/O port. This parameter can be an absolute address, any C expression,
the name of a C function, or an assembly language label. If you want to
specify a hex address, be sure to prefix the address number with 0x; other-
wise, the debugger treats the number as a decimal address.

3) In the Length field, enter the length of the memory range. The length can
be any C expression.

4) If you are connecting a port to be read from a file, in the Filename field,
enter the name of the file to which you want to connect. If you connect a
port to read from a file, the file must exist, or the MC command will fail.

5) In the Read/Write field, enter how the file will be used (for input or output,
respectively). The keywords for the read/write characteristics are avail-
able on page 4-10.

Simulating I/O Space (Simulator Only)

4-15Defining a Memory Map

6) Click OK.

Any port in I/O space can be connected to a file. A maximum of one input and
one output file can be connected to a single port; multiple ports can be con-
nected to a single file. Memory-mapped ports can also be connected to files;
any instruction that reads or writes to the memory-mapped port reads or writes
to the associated file.

Disconnecting an I/O port

Before you can delete an I/O port from the memory map, you must use the MI
command to disconnect the address. To disconnect a port from an input or out-
put file, follow these steps:

1) In the command line, enter mi . This displays the Disconnecting port dialog
box:

2) In the Port Address field, enter I/O port memory address that is to be
closed.

3) In the Read/Write field, enter the characteristic used when the port was
connected.

4) Click OK.

Simulating External Interrupts (Simulator Only)

 4-16

4.9 Simulating External Interrupts (Simulator Only)

Note:

Simulating external interrupts is not supported by the fast version of the
fixed-point simulator or the floating-point version of the simulator.

The ’C6x allows you to simulate interrupts using the pin connect to file com-
mand, PINC. You can use any of the pins, NMI, INT4, INT5, INT6, and INT7.

Note:

The time interval is expressed as a function of CPU clock cycles. Simulation
begins at the first clock cycle.

Setting up your input file

To simulate interrupts, you must first set up an input file that lists interrupt inter-
vals. Your file must contain a clock cycle in the following format:

� The clock cycle parameter represents the CPU clock cycle where you
want an interrupt to occur.

You can have two types of CPU clock cycles:

� Absolute . To use an absolute clock cycle, your cycle value must
represent the actual CPU clock cycle where you want to simulate an
interrupt. For example:

12 34 56

Interrupts are simulated at the 12th, 34th, and 56th CPU clock cycles.
No operation is performed on the clock cycle value; the interrupt oc-
curs exactly as the clock cycle value is written.

� Relative . You can also select a clock cycle that is relative to the time at
which the last event occurred. A plus sign (+) before a clock cycle adds
that value to the total clock cycles preceding it. For example:

12 +34 55

In this example, a total of three interrupts are simulated at the 12th,
46th (12 + 34), and 55th CPU clock cycles. You can mix both relative
and absolute values in your input file.

Simulating External Interrupts (Simulator Only)

4-17Defining a Memory Map

� The rpt {n | EOS} parameter is optional and represents a repetition value.

You can have two forms of repetition to simulate interrupts:

� Repetition on a fixed number of times . You can format your input
file to repeat a particular pattern for a fixed number of times. For exam-
ple:

5 (+10 +20) rpt 2

The values inside the parentheses represent the portion that is re-
peated. Therefore, an interrupt is simulated at the 5th CPU cycle, then
the15th (5 + 10), 35th (15 + 20), 45th (35 + 10), and 65th (45 + 20)
CPU clock cycles.

The n is a positive integer value.

� Repetition to the end of simulation . To repeat the same pattern
throughout the simulation, add the string EOS to the line. For example:

10 (+5 +20) rpt EOS

Interrupts are simulated at the 10th CPU cycle, then the 15th (10 + 5),
35th (15 + 20), 40th (35 + 5), 60th (40 + 20), 65th (60 + 5), and 85th
(65 + 20) CPU cycles, continuing in that pattern until the end of simula-
tion.

Connecting your input file to the interrupt pin

To connect your input file to the interrupt pin, use the following command:

pinc pinname, filename

� The pinname identifies the interrupt pin

� The filename is the name of your input file.

Example 4–1 shows you how to connect your input file using the PINC com-
mand.

Simulating External Interrupts (Simulator Only)

 4-18

Example 4–1. Connecting the Input File With the PINC Command

Suppose you want to generate an external interrupt on INT4 at the 12th,
34th, 56th, and 89th clock cycles.

First, create a data file with an arbitrary name such as myfile:

12 34 56 89

To connect the input file to the pin, enter:

pinc, INT4, myfile Connects your data file
to the specific interrupt pin

This command connects myfile to the pin. As a result, the simulator gener-
ates an external interrupt on at the 12th, 34th, 56th, and 89th clock cycles.

Disconnecting your input file from the interrupt pin

To end the interrupt simulation, disconnect the pin. You can do this with the
following command:

pind pinname

The pinname parameter identifies the interrupt pin and must be one of the ex-
ternal interrupt pins (pins INT4–7, NMI).

The PIND command detaches the file from the input pin. After executing this
command, you can connect another file to the same pin.

Listing the interrupt pins and connecting input files

To verify that your input file is connected to the correct pin, use the PINL com-
mand. The syntax for this command is:

pinl

The PINL command displays all of the unconnected pins first, followed by the
connected pins. For a pin that has been connected, it displays the name of the
pin and the absolute pathname of the file in the Command window.

5-1Loading and Displaying Code

Loading and Displaying Code

The main purpose of a debugging system is to allow you to load and run your
programs in a test environment. This chapter tells you how to load your pro-
grams into the debugging environment, run them on the target system, and
view the associated source code.

Topic Page

5.1 Loading and Displaying Assembly Language Code 5-2.

5.2 Displaying C Code 5-6.

Chapter 5

Loading and Displaying Assembly Language Code

 5-2

5.1 Loading and Displaying Assembly Language Code

To debug a program, you must load the program’s object code into memory.
You create an object file by compiling, assembling, and linking your source
files; see section 2.1, Preparing Your Program for Debugging, on page 2-2.

After you invoke the debugger, you can load object code and/or the symbol
table associated with an object file.

Loading an object file and its symbol table

To load both an object file and its associated symbol table, follow these steps:

1) From the File menu, select Load Program. This displays the Load Pro-
gram File dialog box:

You can change the directory
that you want to search

Select from a list of files

2) Select the file that you want to open. To do so, you might need to change
the working directory.

3) Click Open.

Loading and Displaying Assembly Language Code

5-3Loading and Displaying Code

Loading an object file without its symbol table

You can load an object file without loading its associated symbol table. This
is useful for reloading a program when memory has been corrupted.

To load an object file without its symbol table, select Reload Program from the
File menu. The debugger reloads the file that you loaded last but does not load
the symbol table.

If you want to load a new file without loading its associated symbol table, use
the RELOAD command. The format for this command is:

reload object filename

Loading a symbol table only

You can load a symbol table without loading an object file. This is most useful
in an emulation environment in which the debugger cannot, or need not, load
the object code (for example, if the code is in ROM). In such an environment,
loading the symbol table allows you to perform symbolic debugging and ex-
amine the values of C variables.

To load only a symbol table, select Load Symbols from the File menu. This dis-
plays the Load Symbols from File dialog box.

The File→Load Symbols menu option clears the existing symbol table before
loading the new one but does not modify memory or set the program entry
point.

Loading code while invoking the debugger

You can load an object file when you invoke the debugger. (This has the same
effect as using the File→Load Program menu option described on page 5-2.)
To do this, enter the appropriate debugger-invocation command along with the
name of the object file.

If you want to load only a file’s symbol table when you invoke the debugger,
use the –s option. (This has the same effect as using the File→Load Symbols
menu option.) To do this, enter the appropriate debugger-invocation command
along with the name of the object file and specify –s (see page 2-13 for more
information).

Loading and Displaying Assembly Language Code

 5-4

Displaying portions of disassembly

The assembly language code in the Disassembly window is the reverse
assembly of program-memory contents. This code does not come from any
of your text files or from the intermediate assembly files produced by the
compiler.

Addresses
Contents of
memory
(object code)

Disassembly of
object code
in memory

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, the Disassembly window displays the re-
verse assembly of the object file that is loaded into memory. If you do not load
an object file, the Disassembly window shows the reverse assembly of what-
ever is in memory, which may not be useful.

To display code beginning at a specific point, enter a new starting address in
the Address field of the Disassembly window:

Enter an address here to display
code at a specific point

If you want to specify a hex address, be sure to prefix the address number with
0x; otherwise, the debugger treats the number as a decimal address.

Loading and Displaying Assembly Language Code

5-5Loading and Displaying Code

You can also move through the contents of the Disassembly window by using
the scroll bar. Because the Disassembly window shows the reverse assembly
of memory contents, the scroll bar handle is displayed in the middle of the scroll
bar. The middle of the reverse assembly is defined as the most recent address
or function name that you entered with the DASM command or in the Disas-
sembly window’s Address field. You can scroll up or down to see 1K bytes of
reverse assembly on either side of the most recent address or function that you
entered.

You can scroll
through 1K bytes of
reverse assembly
above or below the
scroll bar handle

Displaying assembly source code

If you assemble your code with the –g assembler option, the debugger dis-
plays the contents of your assembly source file in the File window, in addition
to displaying the reverse assembly of memory contents in the Disassembly
window. This allows you to view all assembly source comments and true as-
sembly statements:

Displaying C Code

 5-6

5.2 Displaying C Code

Unlike the assembly language code displayed in the Disassembly window, C
code is not reconstructed from memory contents—the C code that you view
is your original C source. You can display C code explicitly or implicitly:

� You can force the debugger to show C source by opening a C file or by
entering the FUNC or ADDR command.

� In auto and mixed modes, the debugger automatically opens a File
window if you are currently running C code.

Displaying the contents of a text file

To display the contents of any text file, follow these steps:

1) Use one of these methods to open the Open File dialog box:

� Click the Open icon on the toolbar:

� From the File menu, select Open.

This displays the Open File dialog box:

You can change the directory
that you want to search

Select from a list of files

Select the type of file
you want to open

Displaying C Code

5-7Loading and Displaying Code

2) Select the file that you want to open. To do so, you might need to do one
or more of the following actions:

� Change the working directory.
� Select the type of file that you want to open (for example, .c, .h).

3) Click Open.

The debugger opens a File window that contains the file that you selected. Al-
though this command is most useful for viewing C code, you can use the Open
File dialog box for displaying any text file. You might, for example, want to ex-
amine system files such as autoexec.bat or an initialization batch file. You can
also view your original assembly language source files in the File window if you
assemble your code with the –g assembler option. For every file that you open,
the debugger displays the file in a new File window.

Displaying a C file does not load that file’s object code. If you want to be able
to run the program, you must load the file’s associated object code as de-
scribed in section 5.1, Loading and Displaying Assembly Language Code, on
page 5-2.

Displaying a specific C function

To display a specific C function, use the FUNC command. The syntax for this
command is:

func {function name | address}

FUNC modifies the display so that the code associated with the function or
address that you specify is displayed within a File window. If you supply an
address instead of a function name, the File window displays the function con-
taining address and places the cursor at that line.

You can also use the functions in the Calls window to display a specific C func-
tion. This is similar to the FUNC or ADDR command but applies only to the
functions listed in the Calls window. Choose one of these methods to display
a function listed in the Calls window:

� Single-click the name of the C function.
� Select the name of the C function and press F9 .

Displaying C Code

 5-8

Displaying code beginning at a specific point

To display C or assembly code beginning at a specific point, use the ADDR
command. The syntax for this command is:

addr {address | function name}

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the File
window. In mixed mode, ADDR affects both the File and Disassembly
windows.

6-1

Running Code

To debug your programs, you must execute them on a debugging tool (the
emulator or simulator). The debugger provides two basic types of commands
to help you run your code:

� Basic run commands run your code without updating the display until you
explicitly halt execution.

� Single-step commands execute assembly language or C code one state-
ment at a time and update the display after each execution.

This chapter describes the basic run commands and the single-step com-
mands, tells you how to halt program execution, and discusses using software
breakpoints.

Topic Page

6.1 Defining the Starting Point for Program Execution 6-2.

6.2 Using the Basic Run Commands 6-4.

6.3 Single-Stepping Through Code 6-8.

6.4 Running Code Conditionally 6-11.

6.5 Benchmarking 6-12.

6.6 Halting Program Execution 6-13.

6.7 Using Software Breakpoints 6-14.

Chapter 6

Defining the Starting Point for Program Execution

 6-2

6.1 Defining the Starting Point for Program Execution

All run and single-step commands begin executing from the current PC. When
you load an object file, the PC is automatically set to the starting point for pro-
gram execution. You can easily identify the current PC by:

� Finding its entry in the CPU window

� Finding the line in the File or Disassembly window that has a yellow arrow
next to it. To do this, execute one of these commands:

dasm PC
or
addr PC

Sometimes you may want to modify the PC to point to a different position in
your program. Choose one of these methods:

� If you executed some code and plan to rerun the program from the original
program entry point, click the Restart icon on the toolbar:

Alternatively, you can select Restart from the Target menu.

� Set the PC to the current line in the File or Disassembly window. The cur-
rent line is highlighted in the display:

Current PC Current line

To set the PC to the current line in the File or Disassembly window, follow
these steps:

1) Open the context menu for the window. (For more information, see
page 1-6.)

2) Select Set PC to Cursor from the context menu.

Defining the Starting Point for Program Execution

6-3Running Code

� Modify the PC’s contents with one of these commands:

?PC = new value
or
eval pc = new value

� Modify the value of the PC in the CPU window. (For more information
about changing values the displayed in the CPU window, see section 7.4,
Basic Methods for Changing Data Values, on page 7-5.)

Using the Basic Run Commands

 6-4

6.2 Using the Basic Run Commands
The debugger provides a basic set of run commands that allow you to do the
following:

� Run an entire program
� Run code up to a specific point in a program
� Run code in the current C function
� Run code through breakpoints
� Run code while disconnected from the target system.

You can also use the debugger to reset the target system (emulator only) or
simulator.

Running an entire program

To run the entire program, use one of these methods:

� Click the Run icon on the toolbar:

� From the Target menu, select Run.

� Press F5 .

� From the command line, enter the RUN command. The format for this
command is:

run [expression]

If you supply a logical or relational expression, the RUN command be-
comes a conditional run (see section 6.4 on page 6-11).

If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

Note:

The emulator cannot step into an interrupt using the conditional RUN com-
mand with a 1 option (RUN 1). To halt on the first instruction of an interrupt
service routine, you must set a software breakpoint or a program address
breakpoint on the first instruction of the interrupt service routine and enter a
RUN command.

When you run the entire program using one of these methods and do not sup-
ply an expression, the program executes until one of the following actions
occurs:

� The debugger encounters a breakpoint. (For more information about how
breakpoints affect a conditional run, see section 6.4 on page 6-11.)

Using the Basic Run Commands

6-5Running Code

� You click the Halt icon on the toolbar:

� You select Halt! from the Target menu.

� You press ESC .

Running code up to a specific point in a program

You can execute code up to a specific point in your program by using the GO
command. The format for this command is:

go [address]

If you do not supply an address parameter, the program executes until one
of the following actions occurs:

� The debugger encounters a breakpoint.

� You click the Halt icon on the toolbar:

� You select Halt! from the Target menu.

� You press ESC .

You can also execute code from the current PC to the current line in the File
or Disassembly window. The current line is highlighted in the display:

Current PC Current line

To run code from the current PC to the current line in the File or Disassembly
window, follow these steps:

� Open the context menu for the window. (For more information, see page
1-6.)

� Select Run to Cursor from the context menu.

Using the Basic Run Commands

 6-6

Running the code in the current C function

You can execute the code in the current C function and halt when execution
returns to the function’s caller. To do so, use one of these methods:

� Click the Return icon on the toolbar:

� From the Target menu, select Return.

Breakpoints do not affect this command, but you can halt execution by doing
one of the following:

� Click the Halt icon on the toolbar:

� From the Target menu, select Halt!.

� Press ESC .

Running code while disconnected from the target system (emulator only)

Use the RUNF command to disconnect the emulator from the target system
while code is executing.

When you use the RUNF command, the debugger clears all breakpoints, dis-
connects the emulator from the target system, and causes the processor to
begin execution at the current PC. You can quit the debugger, or you can con-
tinue to enter commands. However, any command that causes the debugger
to access the target at this time produces an error.

Run Free is useful in a multiprocessor system. It is also useful in a system in
which several target systems share an emulator; the Run Free option enables
you to disconnect the emulator from one system and connect it to another.

Running code through breakpoints

You can use the debugger to execute code and run through breakpoints. This
is referred to as a continuous run. When a breakpoint is encountered during
a continuous run, execution does not halt. Instead, the debugger updates the
display when a breakpoint is encountered.

To execute a continuous run, select Continuous Run from the Target menu.

To halt a continuous run, use one of the methods described in section 6.6 on
page 6-13.

Using the Basic Run Commands

6-7Running Code

Resetting the simulator

You can use the debugger to reset the simulator by using a reset command.
This is a software reset.

To execute a reset, select Reset Target from the Target menu.

If you are using the simulator and execute a software reset, the simulator simu-
lates the ’C6x processor and peripheral reset operation, putting the processor
in a known state.

Resetting the emulator

You can use the debugger to reset the target system by using a reset com-
mand.To execute a reset, select Reset Target from the Target menu.

Single-Stepping Through Code

 6-8

6.3 Single-Stepping Through Code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step continuously; the debugger updates the display after each state-
ment is executed.) You can single-step through assembly language code or
C code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution can vary, depending on whether you are single-
stepping through C code or assembly language code.

Note:

If you use the STEP command or Target menu Step option to single-step
through assembly language code, the debugger ignores interrupts.

Each of the single-step commands in this section has an optional expression
parameter that works like this:

� If you do not supply an expression, the program executes a single state-
ment, then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see section 6.4 on page 6-11).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count assembly
language statements unless you are currently in C code. If you are cur-
rently in C code, the debugger single-steps count C statements.

Single-stepping through assembly language or C code

The debugger has a basic single-step command that allows you to single-step
through assembly language or C code. If you are currently in assembly lan-
guage code, the debugger executes one assembly language statement at a
time. If you are currently in C code, the debugger executes one C statement
at a time.

If you are in mixed mode, the debugger executes one assembly language
statement at a time.

Single-Stepping Through Code

6-9Running Code

To use the basic single-step command, choose one of these methods:

� Click the Step icon on the toolbar:

� From the Target menu, select Step.

� Press F8 .

� From the command line, enter the STEP command. The format for this
command is:

step [expression]

When you use the basic single-step command in C code and encounter a func-
tion call, the step command shows you the single-step execution of the called
function (assuming that the function was compiled with the compiler’s –g
option). When function execution completes, single-step execution returns to
the caller. If the function was not compiled with the –g option, the debugger
executes the function but does not show single-step execution of the function.

For more information about the compiler’s –g option, see the TMS320C6x Op-
timizing C Compiler User’s Guide.

Single-stepping through C code

The basic single-step command, described in the Single-stepping through as-
sembly language or C code section, always executes one statement at a
time—no matter whether you are in assembly language code or in C code. If
you want to single-step in terms of a C statement and execute all assembly
language statements associated with a single C statement before updating the
display, use the C single-step command. To use the C single-step command,
choose one of these methods:

� Click the Single Step C icon on the toolbar:

� From the Target menu, select Step C.

� Press CONTROL F8 .

� From the command line, enter the CSTEP command. The format for this
command is:

cstep [expression]

Single-Stepping Through Code

 6-10

Continuously stepping through code

You can use the debugger to watch your code as it executes. You can step
through code continuously until the debugger reaches a breakpoint. This is re-
ferred to as a continuous step. When a breakpoint is encountered during a con-
tinuous step, execution halts.

To execute a continuous step, select Continuous Step from the Target menu.

If no breakpoints are set, you can halt a continuous step by using one of the
methods described in section 6.6 on page 6-13.

Single-stepping through code and stepping over C functions

Besides single-stepping through all code with the basic single-step com-
mands, you can single-step through assembly language or C code and step
over function calls. This type of single-stepping always steps to the next con-
secutive statement and never shows the execution of called functions. You can
use the next single-step command in one of two ways:

� To use the next single-step command and single-step in terms of assem-
bly language or C statements (similar to the basic single-step command),
choose one of these methods:

� Click the Next Statement icon on the toolbar:

� From the Target menu, select Next.

� Press F10 .

� From the command line, enter the NEXT command. The format for
this command is:

next [expression]

� To use the next single-step command and single-step in terms of C state-
ments (similar to the C single-step command), choose one of these meth-
ods:

� Click the Next C Statement icon on the toolbar:

� From the Target menu, select Next C.

� Press CONTROL F10 .

� From the command line, enter the CNEXT command. The format for
this command is:

cnext [expression]

Running Code Conditionally

6-11Running Code

6.4 Running Code Conditionally

The RUN, STEP, CSTEP, NEXT, and CNEXT commands all have an optional
expression parameter that can be a relational or logical expression. This type
of expression uses one of the following operators as the highest precedence
operator in the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use software breakpoints with conditional runs; the expression is
evaluated each time the debugger encounters a breakpoint. (Breakpoints are
described in section 6.7 on page 6-14.) For single-step commands, the ex-
pression is evaluated at each statement. Each time the debugger evaluates
the conditional expression, it updates the screen.

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you are observing a particular
variable in a Watch window, you may want to set breakpoints on statements
that affect that variable and to use that variable in the expression.

Benchmarking

 6-12

6.5 Benchmarking

The debugger allows you to keep track of the number of CPU clock cycles
consumed by a particular section of code. The debugger maintains the count
in a pseudoregister named CLK. This process is referred to as benchmarking.

Benchmarking code is a multiple-step process:

Step 1: Set a software breakpoint at the statement that marks the beginning
of the section of code that you want to benchmark. (For more in-
formation about setting software breakpoints, see section 6.7 on
page 6-14.)

Step 2: Set a software breakpoint at the statement that marks the end of the
section of code that you want to benchmark.

Step 3: Enter any run command to execute code up to the first breakpoint.

Step 4: From the Target menu, select Run Benchmark.

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the Watch window with the
Setup→Watch Variable menu option. This value is valid until you enter another
run command.

Notes:

1) Run Benchmark (or RUNB command) counts CPU clock cycles from the
current PC to the breakpoint. This count is not cumulative. You cannot
add the number of clock cycles between points A and B to the number
of cycles between points B and C to learn the number of cycles between
points A and C. This situation occurs because of pipeline filling and
flushing.

2) The value in CLK is valid only after using a Run Benchmark command
that is terminated by a software breakpoint.

3) When programming in C, avoid using a variable named CLK.

4) The RUNB command accesses the analysis module to count CPU clock
cycles. If you have set up an instruction breakpoint, the debugger halts
on that breakpoint in addition to your software breakpoints.

Halting Program Execution

6-13Running Code

6.6 Halting Program Execution

Whenever you are running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a
particular point where you told it to stop (by supplying a count or an address
with the RUN, GO, or any of the single-step commands). If you want to halt
program execution explicitly, you can use one of these methods:

� Click the Halt icon on the toolbar:

� From the Target menu, select Halt!.

� Press ESC .

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

What happens when you halt the emulator

If you are using the emulator version of the debugger, any of the above meth-
ods halts the target system after you have commanded the debugger to run
code while disconnected from the target (run free).

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you use the RUNF command, quit the debugger, and later reinvoke
the debugger, you effectively reconnect the emulator to the target system and
run the debugger in its normal mode of operation. When you invoke the debug-
ger, use the –s option to preserve the current PC and memory contents.

To provide memory visibility, the emulator completes load and store instruc-
tions that are already in the pipeline while halting. After halting, the emulator
provides visibility to the register file on pipeline cycle boundaries. The memory
state provided by the emulator reflects the data that the next memory opera-
tion accesses. The emulator saves the data read from the load instructions
and restores this data to the pipeline when the emulator resumes execution.

Also, when the emulator halts, all the memory controllers that are internal to
the processor halt. This allows the memory controllers’ pipeline to remain syn-
chronized with the processor’s pipeline.

Using Software Breakpoints

 6-14

6.7 Using Software Breakpoints

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints at critical points in your code. You can set soft-
ware breakpoints in assembly language code and in C code. A software break-
point halts any program execution, whether you are running or single-stepping
through code.

Software breakpoints are especially useful in combination with conditional
execution (described in section 6.4 on page 6-11).

When you set a software breakpoint, the debugger highlights the breakpointed
line with this prefix: .

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement if the debugger has access to the C source. If you set
a breakpoint in the C source, the debugger also highlights the associated
statement in the disassembly. (If more than one assembly language statement
is associated with a C statement, the debugger highlights the first of the asso-
ciated assembly language statements.)

A breakpoint is set at
this C statement

A breakpoint is also
set at the associated

assembly language
statement

Using Software Breakpoints

6-15Running Code

Notes:

1) After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

2) You can set up to 200 breakpoints. If you are using the emulator, you can
set only one software breakpoint per set of parallel instructions that
execute in the same cycle.

3) You cannot set multiple breakpoints at the same statement.

Setting a software breakpoint

To set a breakpoint, click next to the statement in the Disassembly or File win-
dow where you want the breakpoint to occur. When you click next to a state-
ment in the Disassembly or File window, a breakpoint symbol is shown:

A breakpoint is set on this statement

Another way to set a breakpoint is to use the context menu for the File or Disas-
sembly window. You can set a breakpoint on the current line in the File or Dis-
assembly window. The current line is highlighted in the display.

To set a breakpoint on the current line in the File or Disassembly window, follow
these steps:

� Open the context menu for the window. (For more information, see page
1-6.)

� Select Toggle Breakpoint from the context menu.

You can also set a breakpoint by using the Breakpoint Control dialog box. To
open the Breakpoint Control dialog box, use one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

Using Software Breakpoints

 6-16

� From the Setup menu, select Breakpoints.

This displays the Breakpoint Control dialog box:

List of set breakpoints

To set a breakpoint, enter an absolute
address, any C expression, the name of

a C function, or the name of an assembly
language label and click Add.

To set a breakpoint, follow these steps:

1) In the Address field of the Breakpoint Control dialog box, enter an absolute
address, any C expression, the name of a C function, or the name of an
assembly language label. If you want to specify a hex address, be sure to
prefix the address number with 0x; otherwise, the debugger treats the
number as a decimal address.

2) Click Add. The new breakpoint appears in the breakpoint list.

3) Click Close to close the Breakpoint Control dialog box.

Using Software Breakpoints

6-17Running Code

Clearing a software breakpoint

There are several ways to clear a software breakpoint. If you clear a breakpoint
from an assembly language statement, the breakpoint is also cleared from any
associated C statement; if you clear a breakpoint from a C statement, the
breakpoint is also cleared from the associated statement in the disassembly.

To clear a breakpoint, click the breakpoint symbol () in the File or Disassem-
bly window.

Another way to clear a breakpoint is to use the context menu for the File or Dis-
assembly window:

1) Select the line in the File or Disassembly window from which you want to
remove the breakpoint.

2) From the context menu for the window, select Toggle Breakpoint.

You can also clear a breakpoint by using the Breakpoint Control dialog box
(see the illustration on page 6-16):

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) Select the address of the breakpoint that you want to clear.

3) Click Delete. The breakpoint is removed from the breakpoint list.

4) Click Close to close the Breakpoint Control dialog box.

Clearing all software breakpoints

To clear all software breakpoints, follow these steps:

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) Click Delete All.

3) Click Close to close the Breakpoint Control dialog box.

Using Software Breakpoints

 6-18

Saving breakpoint settings

Software breakpoint settings are lost when you exit the debugger. However,
you can save the list of breakpoints that you have set by following these steps:

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) Click Save List. This displays the Save Breakpoint File dialog box:

Enter a name for the breakpoint file. Use a .bpt extension.

3) Select the directory where you want the file to be saved.

4) In the File name field, enter a name for the breakpoint file. You can use a
.bpt extension to identify the file as a breakpoint file.

5) Click Save.

6) In the Breakpoint Control dialog box, click Close.

Notes:

1) The breakpoint file is editable.

2) You can execute the breakpoint file with the TAKE command to automati-
cally set up the breakpoints that are defined in the file.

3) You can include the breakpoint file in your initialization batch file.

Using Software Breakpoints

6-19Running Code

Loading saved breakpoint settings

To load a list of saved breakpoints, follow these steps:

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) Click Load List. This displays the Load Breakpoint File dialog box:

Select from a list of files

3) Select the file that you want to open. To do so, you might need to change
the working directory.

4) Click Open.

5) In the Breakpoint Control dialog box, click Close.

Note:

When you load a breakpoint file, breakpoints that you have defined pre-
viously in your debugging session are not cleared but remain in effect.

7-1Managing Data

Managing Data

The debugger allows you to examine and modify many types of data related
to the ’C6x and to your program. You can display and modify these values:

� The contents of individual memory locations or a range of memory

� The contents of ’C6x registers

� Variables, including scalar types (ints, chars, etc.) and aggregate types
(arrays, structures, etc.)

Topic Page

7.1 Where Data Is Displayed 7-2.

7.2 How the Emulator Displays Data for Load and
Store Instructions 7-2.

7.3 Basic Commands for Managing Data 7-3.

7.4 Basic Methods for Changing Data Values 7-5.

7.5 Managing Data in Memory 7-7.

7.6 Managing Register Data 7-13.

7.7 Managing Data in a Watch Window 7-18.

7.8 Displaying Data in Alternative Formats 7-22.

Chapter 7

Where Data Is Displayed

 7-2

7.1 Where Data Is Displayed

Various types of data are displayed in one of three dedicated windows.

Type of Data Window Name Purpose

Memory locations Memory window Displays the contents of a range
of memory

Register values CPU window Displays the contents of ’C6x
registers

Pointer data, variables, ag-
gregate types, and specific
memory locations or registers

Watch window Displays selected data

The three dedicated windows are referred to as data-display windows.

7.2 How the Emulator Displays Data for Load and Store Instructions

The ’C6x emulator allows you to view the register file on pipeline cycle bound-
aries. When the emulator is halting and resuming execution, it maintains pipe-
line and memory synchronization; however, the CPU and Memory windows do
not necessarily reflect this synchronization when displaying the data from load
and store instructions.

While halting, the emulator completes the store instructions that have passed
the E1 phase of the pipeline. The emulator immediately updates the Memory
window with the data from the completed store instructions to reflect what the
next load instruction reads from memory.

Unlike store instructions, load instructions shown in the register file displayed
in the CPU window reflect the latency of the pipeline. When halting, the emula-
tor completes the load instructions that are currently in the pipeline. The data
from these load instructions is saved by the emulator and restored to the pipe-
line when execution is resumed.

Where Data Is Displayed / How the Emulator Displays Data for Load and Store Instructions

Basic Commands for Managing Data

7-3Managing Data

7.3 Basic Commands for Managing Data

The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several general-
purpose commands that you can use to display or modify any type of data.

Determining the type of a variable

If you want to know the type of a variable or function, use the WHATIS com-
mand. The syntax for this command is:

whatis symbol

The symbol’s data type is then listed in the display area of the Command win-
dow. The symbol can be any variable (local, global, or static), a function name,
a structure tag, a typedef name, or an enumeration constant.

Command Result Displayed in the Command Window

whatis aai int aai[10][5];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

Evaluating an expression

The ? (evaluate expression) command evaluates an expression and shows
the result in the display area of the Command window. The syntax for this com-
mand is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the
expression.

If the result of expression is scalar, the debugger displays the result as a deci-
mal value in the Command window. If expression is a structure or array, the
debugger displays the entire contents of the structure or array; you can halt
long listings by pressing ESC .

Basic Commands for Managing Data

 7-4

Here are some examples that use the ? command.

Command Result Displayed in the Command Window

? aai aai[0][0] 1
aai[0][1] 23
aai[0][2] 45
.
.
.

? j 4194425

? j=0x5a 90

The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the display area of the Command window. The syn-
tax for this command is:

eval expression
or
e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file, where it is not necessary to display the result.

For information about the PDM version of the EVAL command, refer to section
11.9, Evaluating Expressions, on page 11-21.

Basic Methods for Changing Data Values

7-5Managing Data

7.4 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window
� Memory contents displayed in a Memory window
� Values or elements displayed in a Watch window

To modify data in a data-display window, follow these steps:

1) Select the data item that you want to modify. Choose one of these
methods:

� Double-click the data item that you want to modify.
� Select the data item that you want to modify and press F9 .

2) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

3) When you finish typing the new information, press or click on another
data value. This replaces the original value with the new value.

Editing data using expressions that have side effects

Using the overwrite editing feature to modify data is straightforward. However,
data-management methods take advantage of the fact that C expressions are
accepted as parameters by most debugger commands and that C expressions
can have side effects. When an expression has a side effect, the value of some
variable in the expression changes as the result of evaluating the expression.

Side affects allow you to coerce many commands into changing values for you.
Specifically, it is most helpful to use ? and EVAL to change data as well as
display it.

For example, if you want to see what is in register A3, you can enter:

? A3

? A3++ Side effect: increments the contents of A3 by 1
eval ––A3 Side effect: decrements the contents of A3 by 1
? A3 = 8 Side effect: sets A3 to 8
eval A3/=2 Side effect: divides contents of A3 by 2

Basic Methods for Changing Data Values

 7-6

Not all expressions have side effects. For example, if you enter ? A3+4 , the
debugger displays the result of adding 4 to the contents of A3 but does not
modify A3’s contents. Expressions that have side effects must contain an as-
signment operator or an operator that implies an assignment. Operators that
can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –

Managing Data in Memory

7-7Managing Data

7.5 Managing Data in Memory

The main way to observe memory contents is to view the display in a Memory
window. In mixed and assembly modes, the debugger displays the default
Memory window automatically (labeled Memory). You can open any number
of additional Memory windows to display different memory ranges. Figure 7–1
shows the default Memory window.

Figure 7–1. The Default Memory Window

Enter an address here to change
the range shown in the window

DataAddresses

Scroll bar handle

The amount of memory that you can display in a Memory window is limited by
the size of the window (which is limited only by your monitor’s screen size).

The debugger allows you to change the memory range displayed in the
Memory window and to open additional Memory windows. The debugger also
allows you to change the values at individual locations; for more information,
see section 7.4, Basic Methods for Changing Data Values, on page 7-5.

Changing the memory range displayed in a Memory window

To change the memory range displayed in a Memory window, enter a new
starting address in the Address field of the Memory window, as shown in
Figure 7–1. If you want to specify a hex address, be sure to prefix the address
number with 0x; otherwise, the debugger treats the number as a decimal ad-
dress.

You can also change the display of any data-display window—including the
Memory window—by scrolling through the window’s contents. In the Memory
window, the scroll bar handle is displayed in the middle of the scroll bar (see
Figure 7–1). The middle of memory contents is defined as the most recent
starting address that you entered in the Address field of the Memory window
or with the MEM command (described on page 12-32). You can scroll up or
down to see 1K bytes of memory on either side of the current starting address.

Managing Data in Memory

 7-8

Opening an additional Memory window

To open an additional Memory window, use the MEM command. The syntax
for this command is:

mem expression [, [display format] [, window name]]

� The expression represents the address of the first entry in the Memory
window. The end of the range is defined by the size of the window: to show
more memory locations, make the window larger; to show fewer locations,
make the window smaller.

The expression can be an absolute address, a symbolic address, or any C
expression. Here are some examples:

� Absolute address. Suppose that you want to display data memory
beginning from the very first address. You might enter this command:

mem 0x0

Memory window addresses are shown in hexadecimal format. If you
want to specify a hex address, be sure to prefix the address number
with 0x; otherwise, the debugger treats the number as a decimal ad-
dress.

� Symbolic address. You can use any defined C symbol as an expres-
sion parameter. For example, if your program defined a symbol
named SYM, you could enter this command:

mem &SYM

Prefix the symbol with the & operator to use the address of the symbol.

� C expression . If you use a C expression as a parameter, the debug-
ger evaluates the expression and uses the result as a memory ad-
dress:

mem SP – A0 + label

mem SP – AR0 + label

� The display format parameter is optional. When used, the data is dis-
played in the selected format, as shown in Table 7–3 on page 7-22.

� Use the window name parameter to name the additional Memory window.
The debugger appends the window name to the Memory window label. If
you do not supply a name, the debugger does not open a new window; it
simply updates the default Memory window to reflect the changes.

Managing Data in Memory

7-9Managing Data

Displaying memory contents while you are debugging C

If you are debugging C code in auto mode, you do not see a Memory window—
the debugger does not show the Memory window in the C-only display. How-
ever, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of memory location 26
(hex), you could enter:

? *0x26

The debugger displays the memory value in the display area of the Com-
mand window.

� If you want to observe a specific memory location over a longer period of
time, you can display it in a Watch window. Use the Setup→Watch
Variable... menu option to do this:

1) In the Expression field, enter *0x26 .

2) In the Format combo box, enter x-Hexadecimal.

3) Click OK.

The debugger displays the memory value in the Watch window.

� You can also use the DISP command to display memory contents in a
Watch window. The Watch window shows memory in an array format with
the specified address as member [0]. In this situation, you can also use
casting to display memory contents in a different numeric format:

disp *(float *)0x26

Managing Data in Memory

 7-10

Saving memory values to a file

Sometimes it is useful to save a block of memory values to a file. You can use
the Memory→Save menu option to do this; the files are saved in COFF format.

1) From the Memory menu, select Save. This displays the Save Memory to
COFF File dialog box:

Enter the first address
of the block that you
want to save

Enter a length, in
words, of the block

Enter a file name for
the saved block

2) In the Address field, enter the first address in the block that you want to
save. To specify a hex address, prefix the address number with 0x; other-
wise, the debugger treats the number as a decimal address.

3) In the Length field, enter a length, in words, of the block. This parameter
can be any C expression.

4) In the Filename field, enter a name for the saved block of memory. If you
do not supply an extension, the debugger adds a .obj extension.

5) Click OK.

Managing Data in Memory

7-11Managing Data

For example, to save the values in data memory locations 0x0000–0x003F to
a file named memsave.obj, you could enter:

The value of the Length field is measured in words and data memory locations
are measured in bytes. For this example, you must enter a length of 0x10
words to equal 0x40 bytes (0x0000–0x0040).

To reload memory values that were saved in a file, use the File→Load Program
menu option.

Filling a block of memory

Sometimes it is useful to fill an entire block of memory at once with a particular
value. You can fill a block of memory word by word using the Memory→Fill
Word command.

1) From the Memory menu, select Fill Word. This displays the Fill Memory
dialog box:

Enter the first address
of the block that you
want to fill

Enter a length, in
words, of the block

Enter the data value
that you want to use

2) In the Address field, enter the first address in the block that you want to
fill. To specify a hex address, prefix the address number with 0x; other-
wise, the debugger treats the number as a decimal address.

Managing Data in Memory

 7-12

3) In the Length field, enter a length, in words, of the block.

4) In the Data field, enter a value that you want placed in each word in the
block.

5) Click OK.

For example, to fill memory locations 0x1100–0x113B with the value 0xABCD,
you could enter:

If you want to check whether memory has been filled correctly, you can change
the Memory window display to show the block of memory beginning at memory
address 0x1100:

Change the Memory display
by entering a new addressXXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX

1100

You can also use the debugger to fill a block of memory byte by byte by using
the Memory→Fill Byte command.

1) From the Memory menu, select Fill Byte. This displays the Fill
Memory—Byte dialog box.

2) In the Address field, enter the first address in the block that you want to
fill. To specify a hex address, prefix the address number with 0x; other-
wise, the debugger treats the number as a decimal address.

3) In the Length field, enter a length, in bytes, of the block.

4) In the Data field, enter a value that you want placed in each byte in the
block.

5) Click OK.

Managing Register Data

7-13Managing Data

7.6 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers.

Register contents

Register name

The debugger provides commands that allow you to display and modify the
contents of specific registers. You can use the data-management commands
or the debugger’s overwrite editing capability to modify the contents of any reg-
ister displayed in the CPU or Watch window. For more information, see sec-
tion 7.4, Basic Methods for Changing Data Values, on page 7-5.

Displaying register contents

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers; if you are
interested in only a few registers, you might want to make the CPU window
small and use the extra screen space for the Disassembly or File window.

You can also reorder the registers in the CPU window and display the ones that
you are most interested in at the top of the CPU window. To do so, use the drag-
and-drop method, as shown in Figure 7–2.

Managing Register Data

 7-14

Figure 7–2. Reordering Registers in the CPU Window Using the Drag-and-Drop Method

Drag the register to its new location

To move a register, point to a register
and hold down the left mouse button

When you release the mouse
button, the register moves to
its new location

In addition to the CPU window, you can observe the contents of selected regis-
ters by using the ? (evaluate expression) command or Setup→Watch Variable
menu option:

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of A3, you could enter:

? A3

The debugger displays A3’s current contents in the display area of the
Command window.

Managing Register Data

7-15Managing Data

� If you want to observe a register over a longer period of time, you can use
Setup→Watch Variable to display the register in a Watch window. For
example, if you want to observe the control status register (CSR), you
could enter:

This adds the CSR to the Watch window in hexadecimal format and labels
it as Control Status Register. The register’s contents are continuously up-
dated, just as if you were observing the register in the CPU window.

When you are debugging C in auto mode, the ? command and Setup→Watch
Variable menu option are useful because the debugger does not show the
CPU window in the C-only display.

Managing Register Data

 7-16

Accessing single-precision floating-point registers

The debugger allows you to display the registers in the two general-purpose
register files (A and B) in single-precision floating-point format. Table 7–1 lists
the pseudoregister name for each general-purpose register.

Table 7–1. Pseudoregister Names for Single-Precision Floating-Point Registers

Register Name
Pseudoregister

Name Register Name
Pseudoregister

Name

A0 FA0 B0 FB0

A1 FA1 B1 FB1

A2 FA2 B2 FB2

A3 FA3 B3 FB3

A4 FA4 B4 FB4

A5 FA5 B5 FB5

A6 FA6 B6 FB6

A7 FA7 B7 FB7

A8 FA8 B8 FB8

A9 FA9 B9 FB9

A10 FA10 B10 FB10

A11 FA11 B11 FB11

A12 FA12 B12 FB12

A13 FA13 B13 FB13

A14 FA14 B14 FB14

A15 FA15 B15 FB15

You can display the contents of these registers by using the ? (evaluate ex-
pression) command or Setup→Watch Variable menu selection.

� For example, assume B15 = 0xE908. If you want to evaluate the FB15
pseudoregister, enter:

?fb15

The debugger shows the result in the display area of the Command
window:

?fb15 8.3595861e–041

� To modify the FA15 pseudoregister and set it equal to 15.75, enter:

?fa15 = 15.75

The debugger displays the following in the display area of the Command
window:

?fa15 = 15.75 1.575000e+001

Managing Register Data

7-17Managing Data

Accessing double-precision floating-point registers

The debugger allows you to access double-precision floating-point values in
even/odd register pairs. There are 16 sets of general-purpose register pairs.
Table 7–2 lists the pseudoregister name for each general-purpose register
pair.

Table 7–2. Pseudoregister Names for Double-Precision Floating-Point Registers

Register Pair
Pseudoregister

Name Register Pair
Pseudoregister

Name

A1:A0 DA0 B1:B0 DB0

A3:A2 DA2 B3:B2 DB2

A5:A4 DA4 B5:B4 DB4

A7:A6 DA6 B7:B6 DB6

A9:A8 DA8 B9:B8 DB8

A11:A10 DA10 B11:B10 DB10

A13:A12 DA12 B13:B12 DB12

A15:A14 DA14 B15:B14 DB14

You can display the contents of these registers by using the ? (evaluate ex-
pression) command or Setup→Watch Variable menu option.

� For example, if you want to evaluate the A11:A10 register pair, enter the
? command with the DA10 pseudoregister name:

?da10

The debugger shows the result in the display area of the Command win-
dow:

?da10 1.0933371e–309

� To modify the A11:A10 register pair (DA10) and set it equal to 25.75, enter:

?da10 = 25.75

The debugger displays the following in the display area of the Command
window:

?da10 = 25.75 2.575000e+001

Managing Data in a Watch Window

 7-18

7.7 Managing Data in a Watch Window

The debugger does not maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it would not be useful. Instead, the debugger allows you to open a
Watch window that shows you how program execution affects specific expres-
sions, variables, registers, or memory locations. You can choose which ones
you want to observe. You can also use the Watch window to display members
of complex, aggregate data types, such as arrays and structures.

Current valueLabel

The debugger displays a Watch window only when you specifically request a
Watch window.

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
Watch window. For more information, see section 7.4, Basic Methods for
Changing Data Values, on page 7-5.

Managing Data in a Watch Window

7-19Managing Data

Displaying data in a Watch window

To display a value in the Watch window, follow these steps:

1) From the Setup menu, select Watch Variable. This displays the Watch Add
dialog box:

Enter the item that
you want to watch

Assign a label for the
watched item (optional)

Select a data format
for the watched item

(optional)

Enter a name to open
a new Watch window
(optional)

Select a global
variable to watch

Select a static
variable to watch

Select a local
variable to watch

Select a register
to watch

2) In the Expression field, enter the item that you want to watch. The expres-
sion can be any C expression, including an expression that has side ef-
fects. Or, you can select a global variable, local variable, static variable,
or register to watch.

If you want to use the contents of an address as a parameter, be sure to
prefix the address with the C indirection operator (*). For example, you
could enter this value in the Expression field:

*0x26

3) If you want to change the data format for the watched item, select the for-
mat you want to use from the Format drop list. The format field is optional.

4) If you want to assign a label for the watched item, use the Label field. If you
leave the Label field blank, the debugger displays the expression, vari-
able, or register as the label.

5) If you want to open a new Watch window, enter a name for the new Watch
window in the Window name field. This field is optional. When you enter

Managing Data in a Watch Window

 7-20

a window name, the debugger appends the window name to the Watch
window label. If you do not supply a name, the debugger adds the item to
the default Watch window.

6) Click Apply. When you have entered the last expression, variable, or regis-
ter that you want to watch, click OK.

After you open a Watch window, executing Setup→Watch Variable and using
the same window name adds additional values to the Watch window. You can
open as many Watch windows as you need by using unique window names.

Displaying additional data

When you use the Watch window to view structures, pointers, or arrays, you
can display the additional data (the data pointed to or the members of the array
or structure) by clicking the box icon next to the watched item:

Click this icon to display the
contents of the array

You can also display additional data by selecting an item and pressing SPACE .

Deleting watched values

To delete an entry from a Watch window, follow these steps:

1) Select the item in the Watch window that you want to delete.
2) Press DELETE .

If you want to close a Watch window and delete all of the items in that window
in a single step, use the WR (watch reset) command. The syntax is:

Managing Data in a Watch Window

7-21Managing Data

wr [{* | window name}]

The optional window name parameter deletes a particular Watch window;
* deletes all Watch windows.

Note:

The debugger automatically closes any Watch windows when you execute
File→Load Program, File→Load Symbols, the LOAD command, or the
SLOAD command.

Displaying Data in Alternative Formats

 7-22

7.8 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the Command, Memory, or Watch window can
be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. Table 7–3 lists the available formats and the corresponding
characters that can be used as the display format parameter.

Table 7–3. Display Formats for Debugger Data

Display Format Parameter Display Format Parameter

Default for the data type * Octal o

ASCII character (bytes) c Valid address p

Decimal d ASCII string s

Exponential floating point e Unsigned decimal u

Decimal floating point f Hexadecimal x

Displaying Data in Alternative Formats

7-23Managing Data

Table 7–4 lists the C data types that can be used for the data type parameter.
Only a subset of the display formats applies to each data type, so Table 7–4
also shows valid combinations of data types and display formats.

Table 7–4. Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Decimal (d)

short √ √ √ √ √ Decimal (d)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Decimal (d)

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Decimal (d)

float √ √ √ √ Exponential floating point (e)

double √ √ √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as an unsigned decimal, enter:

setf short, u

� To return all data of type short to its default display format, enter:

setf short, *

� To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

Displaying Data in Alternative Formats

 7-24

The display should look something like this:

� To reset all data types back to their default display formats, enter:

setf *

Changing the default format with data-management commands

You can also use the Setup→Watch Variable menu option, the Watch window
context menu, and the ?, MEM, WA, and DISP commands to show data in al-
ternative display formats. (The ? and DISP commands use alternative formats
only for scalar types, arrays of scalar types, and individual members of aggre-
gate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you do not use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To display memory contents in octal, enter:

mem 0x0,o

Displaying Data in Alternative Formats

7-25Managing Data

� To watch the PC in octal, enter:

� To change the format of the PC in the Watch window:

1) In the Watch window, select PC.

2) Right click the mouse to bring up the Watch window context menu.

3) From the context menu, select Display Format. A submenu of data
formats appears.

4) From the submenu, select the format in which you want the PC to
display.

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with ?, MEM, Setup→Watch Variable, WA, and
DISP. For example, if you want to use display format e or f, the data that you
are displaying must be of type float or type double. Additionally, you cannot use
the s display format parameter with the MEM command.

8-1Profiling Code Execution

Profiling Code Execution

The profiling environment is a special debugger environment that provides a
method for collecting execution statistics about specific areas in your code.
These statistics give you immediate feedback on your application’s perfor-
mance.

Topic Page

8.1 Overview of the Profiling Environment 8-2.

8.2 Overview of the Profiling Process 8-3.

8.3 Entering the Profiling Environment 8-4.

8.4 Defining Areas for Profiling 8-5.

8.5 Defining a Stopping Point 8-15.

8.6 Running a Profiling Session 8-17.

8.7 Viewing Profile Data 8-20.

8.8 Saving Profile Data to a File 8-27.

Chapter 8

Overview of the Profiling Environment

 8-2

8.1 Overview of the Profiling Environment

The profiling environment builds on the same intuitive interface available in the
basic debugging environment and has these additional features:

� More efficient code. Within the profiling environment, you can quickly
identify busy sections in your programs. This helps you to direct valuable
development time toward optimizing the sections of code that most dra-
matically affect program performance.

� Statistics on multiple areas. You can collect statistics about individual
statements in disassembly or C, about ranges in disassembly or C, and
about C functions. When you are collecting statistics on many areas, you
can choose to view the statistics for all the areas or a subset of the areas.

� Comprehensive display of statistics. The profiler provides all the infor-
mation you need for identifying bottlenecks in your code:

� The number of times each area was entered during the profiling
session

� The total execution time of an area, including or excluding the execu-
tion time of any subroutines called from within the area

� The maximum time for one iteration of an area, including or excluding
the execution time of any subroutines called from within the area

Statistics may be updated continuously during the profiling session or at
selected intervals.

� Configurable display of statistics. Display the entire set of data, or
display one type of data at a time. Display all the areas you are profiling,
or display a selected subset of the areas.

� Visual representation of statistics. When you choose to display one
type of data at a time, the statistics are accompanied by histograms for
each area, showing the relationship of each area’s statistics to those of the
other profiled areas.

� Disabled areas. In addition to identifying areas that you can collect
statistics on, you can also identify areas that you do not want to affect the
statistics. This removes the timing impact from code such as a standard
library function or a fully optimized portion of code.

Overview of the Profiling Process

8-3Profiling Code Execution

8.2 Overview of the Profiling Process

Profiling consists of five simple steps:

Enter the profiling environment. See Entering the Profiling Envi-
ronment, page 8-4.

Identify the areas of code where
you want to collect statistics.

See Defining Areas for Profiling,
page 8-5.

Identify the profiling session
stopping points.

See Defining a Stopping Point,
page 8-15.

Step 2

Step 3

Step 1

Begin profiling. See Running a Profiling Ses-
sion, page 8-17.

Step 4

View the profile data. See Viewing Profile Data,
page 8-20.

Step 5

Note:

When you compile a program that will be profiled, you must use the –g and
the –as compiler shell options. The –g option includes symbolic debugging
information; the –as option ensures that you will be able to include ranges
as profile areas. For more information on these options, see the TMS320C6x
C Compiler User’s Guide.

A profiling strategy

Here is a suggestion for a basic approach to profiling the performance of your
program.

1) Mark all the functions in your program as profile areas.

2) Run a profiling session; find the busiest functions.

3) Unmark all the functions.

4) Mark the individual lines in the busy functions and run another profiling
session.

Entering the Profiling Environment

 8-4

8.3 Entering the Profiling Environment

To enter the profiling environment, select Profile Mode from the Profile menu.

Some restrictions apply to the profiling environment:

� The debugger is always in mixed mode.

� Command, Disassembly, File, and Profile are the only windows available;
additional windows, such as a Watch window, cannot be opened.

� The profiling environment supports only a subset of the debugger
commands. Table 8–1 lists the debugger commands that can and cannot
be used in the profiling environment.

Table 8–1. Debugger Commands That Can/Cannot Be Used in the Profiling Environment

Can be used Cannot be used

Data-evaluation commands (such as ?
and EVAL)

Breakpoint commands

Memory-mapping commands

System commands (such as SYS-
TEM, TAKE, and ALIAS)

Windowing commands (such as SIZE,
MOVE, and ZOOM)

All run commands

Debugging mode commands (such as
ASM, C, and MIX)

Commands related to the Watch,
Memory, or Calls window

Chapter 12, Summary of Commands, summarizes all of the debugger
commands and tells you whether a command is valid in the profiling envi-
ronment.

Defining Areas for Profiling

8-5Profiling Code Execution

8.4 Defining Areas for Profiling

Within the profiling environment, you can collect statistics on three types of
areas:

� Individual lines in C or disassembly
� Ranges in C or disassembly
� Functions in C only

To identify any of these areas for profiling, mark the line, range, or function. You
can disable areas so that they do not affect the profile data, and you can reen-
able areas that have been disabled. You can also unmark areas that you are
no longer interested in.

Using the mouse is the simplest way to mark, disable, enable, and unmark
areas. A dialog box also supports these and more complex tasks.

The following subsections explain how to mark, disable, reenable, and unmark
profile areas by using the mouse or the dialog box. For restrictions on profiling
areas, see page 8-12.

Marking an area with a mouse

Marking an area qualifies it for profiling so that the debugger can collect timing
statistics about the area.

Remember, to display C code, use the File→Open menu option or the FUNC
command; to display disassembly, use the DASM command.

Notes:

1) Marking an area in C does not mark the associated code in disassembly.

2) Areas can be nested; for example, you can mark a line within a marked
range. The debugger reports statistics for both the line and the function.

3) Ranges cannot overlap, and they cannot span function boundaries.

Defining Areas for Profiling

 8-6

To mark an area with the mouse, follow these steps:

1) In the File or Disassembly window, click once to the left of the line that you
want to mark or to the left of the first line of the range that you want to mark:

Click next to the line that
you want to mark

When you click once next to a line, a mouse icon appears, telling you that
you need to click one more time:

A mouse icon tells you that you
need to click one more time

2) Choose to mark a single line or a range:

� To mark a single line, click the mouse icon. This turns the mouse icon
into a green right arrow:

A green right arrow tells you that
this line is marked and enabled

Defining Areas for Profiling

8-7Profiling Code Execution

� To mark a range, click the last line of the range that you want to mark.
This changes the mouse icon on the first line of the range into a green
arrow. The entire range is marked with two green right arrows that are
connected:

This range is marked and
enabled

You can also use the mouse to mark a function in C code. To do so, follow these
steps:

1) In the File window, click next to the statement that declares the function
that you want to mark.

2) When you see the mouse icon, click again to mark and enable the C func-
tion. A green arrow appears, indicating that the function is marked.

Note:

In Profile mode, if you try to mark a line or function by double-clicking next
to the statement that you want to mark, the debugger sets a software
breakpoint instead of marking the line or function. To mark a function, click
once. If you are marking a line and you see the mouse icon, click again.

If you are not in profile mode, single-clicking next to a line or function sets a
software breakpoint.

Defining Areas for Profiling

 8-8

Marking an area with a dialog box

You can use a dialog box to mark areas for profiling. To do so, follow these
steps:

1) Open the Profile Marking dialog box by using one of these methods:

� From the Profile menu, select Select Areas.
� From the context menu for the Profile window, select Select Areas.

This displays the Profile Marking dialog box:

Select C or
Assembly level

Select to mark a single line,
a range, or a C function

If you select Lines, enter an absolute address,
C expression, assembly label, or line number

If you select Ranges, enter a start and
end value as absolute addresses, C
expressions, assembly labels, or line
numbers

You can select a
specific filename

You can select a specific
function name

2) In the Level box, select C or Assembly.

3) In the Area box, select Lines, Ranges, or Functions. See Table 8–2 for a
list of valid combinations.

Defining Areas for Profiling

8-9Profiling Code Execution

4) Depending on what you select in step 3, do one or more of the following:

� Next to Lines, enter an absolute address, C expression, assembly
label, or line number. If you are entering an absolute address, be sure
to prefix it with 0x.

� Next to Ranges, enter a Start and an End value as absolute address-
es, C expressions, assembly labels, or line numbers.

� From the Module combo box, select a specific filename.

� From the Function combo box, select a specific function name.

See Table 8–2 for a list of valid combinations.

5) Click Mark.

6) Click Close to close the dialog box.

Table 8–2. Using the Profile Marking Dialog Box to Mark Areas
(a) Marking lines

To mark this area... If C level is selected... If Assembly level is selected...

By line number, address � Select a module name.
� In the Area box, select Lines.
� Next to Lines, specify a line

number.

� In the Area box, select Lines.
� Next to Lines, specify an absolute

address, a C expression, or an
assembly label

All lines in a function � Select a function name.
� In the Area box, select Lines.

� Select a function name.
� In the Area box, select Lines.

(b) Marking ranges

To mark this area... If C level is selected... If Assembly level is selected...

By line numbers, addresses � Select a module name.
� In the Area box, select Ranges.
� Next to Ranges, specify a Start line

number and an End line number.

� In the Area box, select Ranges.
� Next to Ranges, specify a Start and

an End value. Use an absolute
address, a C expression, or an
assembly label for each.

(c) Marking functions

To mark this area... If C level is selected... If Assembly level is selected...

By function name � Select a function name.
� In the Area box, select Functions.

Not applicable

All functions in a module � Select a module name.
� In the Area box, select Functions.

Not applicable

All functions everywhere � In the Area box, select Functions.
� Be sure that Function and Module

are set to N/A.

Not applicable

Defining Areas for Profiling

 8-10

Disabling an area

At times, it is useful to identify areas that you do not want affecting profile statis-
tics. To do this, disable the appropriate area. Disabling effectively subtracts the
timing information of the disabled area from all profile areas that include or call
the disabled area. Areas must be marked before they can be disabled.

For example, if you have marked a function that calls a standard C function
such as malloc(), you may not want malloc() to affect the statistics for the call-
ing function. You could mark the line that calls malloc(), and then disable the
line. This way, the profile statistics for the function would not include the statis-
tics for malloc().

Note:

If you disable an area after you have already collected statistics on it, that
information will be lost.

The easiest way to disable an area is to click the green arrow(s) next to a
marked line, range, or function. When you do so, the arrow(s) becomes white:

This range is still marked, but it
is disabled

XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX
XXXXXXXXXXXXXXXXXXXX

XXX
XXXXXXX
XXXXXXX
XXXXXXX
XXXXXXX

XXXXXXX
XXXXXXX
XXXXXXXXXXXXXX
XXXXXXX

XXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXXXXX

XXXXXXX

XX

You can also disable an area by using the Profile Marking dialog box:

1) Open the Profile Marking dialog box by using one of these methods:

� From the Profile menu, select Select Areas.
� From the context menu for the Profile window, select Select Areas.

This displays the Profile Marking dialog box.

2) In the Level box, select C, Assembly, or Both.

3) In the Area box, select Lines, Ranges, Functions, or All areas. See
Table 8–3 on page 8-13 for a list of valid combinations.

Defining Areas for Profiling

8-11Profiling Code Execution

4) Depending on what you select in step 3, do one or more of the following:

� Next to Lines, enter an absolute address, C expression, assembly
label, or line number.

� Next to Ranges, enter a Start and an End value as absolute address-
es, C expressions, assembly labels, or line numbers.

� From the Module combo box, select a specific filename.

� From the Function combo box, select a specific function name.

See Table 8–3 for a list of valid combinations.

5) Click Disable.

6) Click Close to close the dialog box.

Reenabling a disabled area

When an area has been disabled and you would like to profile it once again,
you must enable the area. To reenable an area, click the white arrow(s) next
to marked line, range, or function; the area will once again be highlighted with
a green arrow.

You can also reenable an area by using the Profile Marking dialog box:

1) Open the Profile Marking dialog box by using one of these methods:

� From the Profile menu, select Select Areas.
� From the context menu for the Profile window, select Select Areas.

This displays the Profile Marking dialog box.

2) In the Level box, select C, Assembly, or Both.

3) In the Area box, select Lines, Ranges, Functions, or All areas. See
Table 8–3 for a list of valid combinations.

4) Depending on what you select in step 3, do one or more of the following:

� Next to Lines, enter an absolute address, C expression, assembly
label, or line number.

� Next to Ranges, enter a Start and an End value as an absolute
address, C expression, assembly label, or line number.

� From the Module combo box, select a specific filename.

� From the Function combo box, select a specific function name.

See Table 8–3 for a list of valid combinations.

5) Click Enable.

6) Click Close to close the dialog box.

Defining Areas for Profiling

 8-12

Unmarking an area

If you want to stop collecting information about a specific area, unmark it.

The easiest way to unmark an area is to double-click the green or white ar-
row(s) next to marked line, range, or function. This unmarks the line, range,
or function.

You can also unmark an area by using the Profile Marking dialog box:

1) Open the Profile Marking dialog box by using one of these methods:

� From the Profile menu, select Select Areas.
� From the context menu for the Profile window, select Select Areas.

2) In the Level box, select C, Assembly, or Both.

3) In the Area box, select Lines, Ranges, Functions, or All areas. See
Table 8–3 for a list of valid combinations.

4) Depending on what you select in step 3, do one or more of the following:

� Next to Lines, enter an absolute address, C expression, assembly
label, or line number.

� Next to Ranges, enter a Start and an End value as absolute address-
es, C expressions, assembly labels, or line numbers.

� From the Module combo box, select a specific filename.

� From the Function combo box, select a specific function name.

See Table 8–3 for a list of valid combinations.

5) Click Unmark.

6) Click Close to close the dialog box.

Restrictions on profiling areas

The following restrictions apply to profiling areas:

� An area cannot begin or end in the delay slot of a load instruction (emulator
only).

� An area cannot begin in the delay slot of a branch instruction.

� An area can end in the last delay slot of a branch instruction but cannot
end in any other delay slot of a branch instruction.

D
efining A

reas for P
rofiling

8-13
P

rofiling C
ode E

xecution

Table 8–3. Disabling, Enabling, Unmarking, or Viewing Areas

(a) Disabling, enabling, unmarking, or viewing lines

To identify this area... If the C level is selected... If the Assembly level is selected... If the Both level is selected...

By line number,
address†

� Select a module name.
� In the Area box, select Lines.
� Next to Lines, specify a line

number.

� In the Area box, select Lines.
� Next to Lines, specify an abso-

lute address, a C expression, or
an assembly label.

Not applicable

All lines in a function � Select a function name.
� In the Area box, select Lines.

� Select a function name.
� In the Area box, select Lines.

� Select a function name.
� In the Area box, select Lines.

All lines in a module � Select a module name.
� In the Area box, select Lines.

� Select a module name.
� In the Area box, select Lines.

� Select a module name.
� In the Area box, select Lines.

All lines everywhere � In the Area box, select Lines.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select Lines.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select Lines.
� Be sure that Function and

Module are set to N/A.

† You cannot specify line numbers or addresses when using the Profile View dialog box.

(b) Disabling, enabling, unmarking, or viewing ranges

To identify this area... If the C level is selected... If the Assembly level is selected... If the Both level is selected...

By line numbers,
addresses†

� Select a module name.
� In the Area box, select Ranges.
� Next to Ranges, specify a Start

line number and an End line
number.

� In the Area box, select Ranges.
� Next to Ranges, specify a Start

and an End value as absolute ad-
dresses, C expressions, or as-
sembly labels.

Not applicable

All ranges in a function � Select a function name.
� In the Area box, select Ranges.

� Select a function name.
� In the Area box, select Ranges.

� Select a function name.
� In the Area box, select Ranges.

All ranges in a module � Select a module name.
� In the Area box, select Ranges.

� Select a module name.
� In the Area box, select Ranges.

� Select a module name.
� In the Area box, select Ranges.

All ranges everywhere � In the Area box, select Ranges.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select Ranges.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select Ranges.
� Be sure that Function and

Module are set to N/A.

† You cannot specify line numbers or addresses when using the Profile View dialog box.

D
efining A

reas for P
rofiling

8-14 Table 8–3. Disabling, Enabling, Unmarking, or Viewing Areas (Continued)

(c) Disabling, enabling, unmarking, or viewing functions

To identify this area... If the C level is selected... If the Assembly level is selected... If the Both level is selected...

By function name � Select a function name.
� In the Area box, select Func-

tions.

Not applicable Not applicable

All functions in a
module

� Select a module name.
� In the Area box, select Func-

tions.

Not applicable � Select a module name.
� In the Area box, select Func-

tions.

All functions every-
where

� In the Area box, select Func-
tions.

� Be sure that Function and
Module are set to N/A.

Not applicable � In the Area box, select Func-
tions.

� Be sure that Function and
Module are set to N/A.

(d) Disabling, enabling, unmarking, or viewing all areas

To identify this area... If the C level is selected If the Assembly level is selected If the Both level is selected

All areas in a function � Select a function name.
� In the Area box, select All areas.

� Select a function name.
� In the Area box, select All areas.

� Select a function name.
� In the Area box, select All areas.

All areas in a module � Select a module name.
� In the Area box, select All areas.

� Select a module name.
� In the Area box, select All areas.

� Select a module name.
� In the Area box, select All areas.

All areas everywhere � In the Area box, select All areas.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select All areas.
� Be sure that Function and

Module are set to N/A.

� In the Area box, select All areas.
� Be sure that Function and

Module are set to N/A.

Defining a Stopping Point

8-15Profiling Code Execution

8.5 Defining a Stopping Point

Before you run a profiling session, you must identify the point where the debug-
ger should stop collecting statistics. By default, C programs contain an exit
label, and this is defined as the default stopping point when you load your pro-
gram. (You can delete exit as a stopping point, if you choose.) If your program
does not contain an exit label, or if you prefer to stop at a different point, you
can use a software breakpoint to define another stopping point. You can set
multiple breakpoints; the debugger stops at the first one it finds.

Even though no statistics can be gathered for areas following a breakpoint, the
areas will be listed in the Profile window.

Note:

You cannot set a software breakpoint on a statement that has already been
defined as a part of a profile area.

Setting and clearing a software breakpoint in the profiling environment is simi-
lar to setting and clearing a software breakpoint in the basic debugging envi-
ronment. For more information about setting and clearing software
breakpoints, see section 6.7 on page 6-14.

Setting a software breakpoint

To set a breakpoint, double-click next to the statement in the Disassembly or
File window where you want the breakpoint to occur.

You can also set a breakpoint using the Breakpoint Control dialog box:

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) In the Address field of the Breakpoint Control dialog box, enter an absolute
address, any C expression, the name of a C function, or an assembly
language label.

3) Click Add. The new breakpoint appears in the breakpoint list.

4) Click Close to close the Breakpoint Control dialog box.

Profiling Code Execution

Defining a Stopping Point

 8-16

Clearing a software breakpoint

To clear a breakpoint, double-click the breakpoint symbol () in the File or
Disassembly window.

You can also clear a breakpoint by using the Breakpoint Control dialog box:

1) Open the Breakpoint Control dialog box by using one of these methods:

� Click the Breakpoint Dialog icon on the toolbar:

� From the Setup menu, select Breakpoints.

2) Select the address of the breakpoint that you want to clear.

3) Click Delete. The breakpoint is removed from the breakpoint list.

4) Click Close to close the Breakpoint Control dialog box.

Defining a Stopping Point

Running a Profiling Session

8-17Profiling Code Execution

8.6 Running a Profiling Session

Once you have defined profile areas and a stopping point, you can run a profil-
ing session. You can run two types of profiling sessions:

� A full profile collects a full set of statistics for the defined profile areas.

� A quick profile collects a subset of the available statistics (it does not
collect exclusive or exclusive max data, which are described in section 8.7
on page 8-20). This reduces overhead because the debugger does not
have to track entering/exiting subroutines within an area.

Running a full or a quick profiling session

To run a profiling session, follow these steps:

1) Open the Profile Run dialog box by using one of these methods:

� Click the Run icon on the toolbar:

� From the Profile menu, select Run.

� Press F5 .

This displays the Profile Run dialog box:

Click this arrow to choose
from a list of starting points

Slide the frequency bar to
specify how often the

display is updated

Select the type of profiling
session that you want to

perform

2) In the Run Method box, select the type of profiling session that you want
to perform: Full or Quick.

Running a Profiling Session

 8-18

3) Slide the Display Rate frequency bar to specify how often the display is
updated.

You can choose a Display Rate from Often to Never. A Display Rate of
Never causes the profiler to display profiling information only when the
profiling session is complete.

4) In the Start Point field, enter the starting point for the profiling session. The
starting point can be a label, a function name, or a memory address. If you
specify a memory address, be sure to prefix the address with 0x.

You can choose from a list of starting points by clicking on the arrow at the
end of the Start Point field.

5) Click OK.

After you click OK, your program restarts and runs to the defined starting
point . You can tell that the debugger is profiling because the status bar
changes to Target: Profiling, as shown here.

Profiling begins when the starting point is reached and continues until a stop-
ping point is reached or until you halt the profiling session by doing one of the
following:

� Click the Halt icon on the toolbar:

� From the Target menu, select Halt!.

� Press ESC .

Running a Profiling Session

8-19Profiling Code Execution

Resuming a profiling session that has halted

To resume a profiling session that has halted, follow these steps:

1) Open the Profile Run dialog box by using one of these methods:

� Click the Run icon on the toolbar:

� From the Profile menu, select Run.

� Press F5 .

This displays the Profile Run dialog box:

Click this arrow to choose
from a list of starting points

Slide the scale bar to
specify how often the

display is updated

To resume a profiling
session that has halted,

select Resume

To clear out previously
collected profile data,
select Clear data

2) In the Run Method box, select Resume.

3) If you want to clear out the previously collected data, select Clear data in
the Run Method box.

4) Slide the Display Rate scale to specify how often the display is updated.

You can choose a Display Rate from Often to Never. A Display Rate of
Never causes the profiler to display profiling information only when the
profiling session is complete.

5) In the Start Point field, enter the starting point for the profiling session. The
starting point can be a label, a function name, or a memory address. If you
specify a memory address, be sure to prefix the address with 0x.

You can choose from a list of starting points by clicking on the arrow at the
end of the Start Point field.

6) Click OK.

Viewing Profile Data

 8-20

8.7 Viewing Profile Data

The statistics collected during a profiling session are displayed in the Profile
window. Figure 8–1 shows an example of this window.

Figure 8–1. An Example of the Profile Window

Profile dataProfile areas

The example in Figure 8–1 shows the Profile window with some default condi-
tions:

� Column headings show the labels for the default set of profile data,
including Count, Inclusive, Incl-Max, Exclusive, and Excl-Max.

� The data is sorted on the address of the first line in each area.

� All marked areas are listed, including disabled areas.

You can modify the Profile window to display selected profile areas or different
data; you can also sort the data differently. The following subsections explain
how to do these things.

Viewing Profile Data

8-21Profiling Code Execution

Viewing different profile data

By default, the Profile window shows a set of statistics labeled as Count, Inclu-
sive, Incl-Max, Exclusive, and Excl-Max. The Address field, which is not part
of the default statistics, can also be displayed. Table 8–4 describes the statistic
that each field represents.

Table 8–4. Types of Data Shown in the Profile Window

Label Profile Data

Count The number of times a profile area is entered during a session

Inclusive The total execution time (cycle count) of a profile area, including the execution time
of any subroutines called from within the profile area

Incl-Max
(inclusive maximum)

The maximum inclusive time for one iteration of a profile area

Exclusive The total execution time (cycle count) of a profile area, excluding the execution time
of any subroutines called from within the profile area

In general, the exclusive data provides the best statistics for comparing the execution
time of one profile area to another area.

Excl-Max
(exclusive maximum)

The maximum exclusive time for one iteration of a profile area

Address The memory address of the line. If the area is a function or range, the Address field
shows the memory address of the first line in the area.

In addition to viewing this data in the default manner, you can view each of
these statistics individually. The benefit of viewing them individually is that in
addition to a cycle count, you are also supplied with a percentage indication
and a histogram.

To view the fields individually, click the Area Name column heading in the Pro-
file window.

Click the Area Name column heading in the Profile window to
change the type of data displayed

Viewing Profile Data

 8-22

When you click the Area Name column heading in the Profile window, fields
are displayed individually in the order shown in Figure 8–2.

Figure 8–2. Cycling Through the Profile Window Fields

Count

Inclusive

Incl-Max

Exclusive

Excl-Max

Address

Default

Note: Exclusive and Excl-Max are shown only when you run a full profile.

One advantage of using the mouse is that you can change the display while
you are profiling.

You can also use the Profile View dialog box to select the field you want to dis-
play. To do so, follow these steps:

1) Open the Profile View dialog box by using one of these methods:

� From the Profile menu, select Change View.
� From the context menu for the Profile window, select Change View.

This displays the Profile View dialog box.

2) In the Display Field box, select the data field that you want to display:

3) Click OK.

Viewing Profile Data

8-23Profiling Code Execution

Sorting profile data

By default, the data displayed in the Profile window is sorted according to the
memory addresses of the displayed areas. The area with the least significant
address is listed first, followed by the area with the next least significant
address, etc. When you view fields individually, the data is automatically sorted
from highest cycle count to lowest (instead of by address).

To sort the data on any of the data fields, follow these steps:

1) Open the Profile View dialog box by using one of these methods:

� From the Profile menu, select Change View.
� From the context menu for the Profile window, select Change View.

This displays the Profile View dialog box.

2) In the Sort Field box, select the data field that you want to sort on:

3) Click OK.

For example, to sort all the data on the basis of values of the Inclusive field,
select Inclusive in the Sort Field box. The area with the highest Inclusive field
displays first, and the area with the lowest Inclusive field displays last. This ap-
plies even when you are viewing individual fields.

Viewing Profile Data

 8-24

Viewing different profile areas

By default, all marked areas are listed in the Profile window. You can modify
the window to display selected areas. To do this, follow these steps:

1) Open the Profile View dialog box by using one of these methods:

� From the Profile menu, select Change View.
� From the context menu for the Profile window, select Change View.

This displays the Profile View dialog box.

Select to show C data,
assembly data, or both

Select to show line areas, range
areas, function areas, or all areas

You can select a specific filename
or function name to filter on

To reset the Profile window to its
default settings, click Defaults

2) In the Level box, select C, Assembly, or Both.

3) In the Area box, select Lines, Ranges, Functions, or All areas. See
Table 8–3 on page 8-13 on for a list of valid combinations.

4) If you want to view areas within a specific file or function, do one of the fol-
lowing:

� From the Module combo box, select a specific filename.
� From the Function combo box, select a specific function name.

See Table 8–3 on page 8-13 for a list of valid combinations.

5) Click OK.

Viewing Profile Data

8-25Profiling Code Execution

If you want to reset the Profile window to its default characteristics, use the Pro-
file View dialog box (Profile→Change View). Click the Defaults button, then
click OK.

Interpreting session data

General information about a profiling session is displayed in the Command
window during and after the session. This information identifies the starting
and stopping points. It also lists statistics for three important areas:

� Run cycles shows the number of execution cycles consumed by the
program from the starting point to the stopping point.

� Profile cycles equals the run cycles minus the cycles consumed by
disabled areas.

� Hits shows the number of internal breakpoints encountered during the pro-
filing session.

Viewing code associated with a profile area

You can view the code associated with a displayed profile area. The debugger
updates the display so that the associated C or disassembly statements are
shown in the File or Disassembly window.

To select the profile area in the Profile window and display the associated
code, double-click the area that you want to display:

Double-click an area to display the associated code

If the area is a function name, the debugger opens a File window and displays
that function:

Viewing Profile Data

 8-26

If the area is in disassembly code, the debugger displays that code in the
Disassembly window.

To view the code associated with another area, double-click another area.

If you are attempting to show disassembly, you might need to make several
attempts because you can access program memory only when the target is
not running.

Saving Profile Data to a File

8-27Profiling Code Execution

8.8 Saving Profile Data to a File

You may want to run several profiling sessions during a debugging session.
Whenever you start a new profiling session, the results of the previous session
are lost. However, you can save the results of the current profiling session to
a system file.

The saved file contents are in ASCII and are formatted in exactly the same
manner as they are displayed (or would be displayed) in the Profile window.
The general profiling-session information that is displayed in the Command
window is also written to the file.

Saving the contents of the Profile window

To save the contents of the Profile window to a system file, follow these steps:

1) From the Profile menu, select Save View. This displays the Save Profile
View File dialog box:

Enter a name for the file. Use a
.prf extension.

2) In the File name field, enter a name for the file. You can use a .prf extension
to identify the file as a profile data file.

3) Click Save.

This saves only the current view; if, for example, you are viewing only the
Count field, then only that information is saved. If the file already exists, debug-
ger overwrites the file with the new data.

Saving Profile Data to a File

 8-28

Saving all data for currently displayed areas

To save all data for the currently displayed areas, follow these steps:

1) From the Profile menu, select Save All. This displays the Save Profile File
dialog box.

2) In the File name field, enter a name for the file. You can use a .prf extension
to identify the file as a profile data file.

3) Click Save.

This saves all views of the data—including the individual count, inclusive,
etc.—with the percentage indications and histograms. If the file already exists,
debugger overwrites the file with the new data.

9-1

Using Simulator
Memory System Analysis

The TMS320C6x simulator/debugger memory system analysis functionality
allows you to measure your system performance accurately. You do this by
monitoring system events using the Analysis Events dialog box and the Analy-
sis Statistics window.

This chapter explains how to count various CPU events and set up breakpoints
on events by using the Analysis menu and the Analysis Events dialog box.

Note:

Memory system analysis is not supported by the fast version of the fixed-
point simulator or by the floating-point version of the simulator.

Topic Page

9.1 Major Functions of Simulator Memory System Analysis 9-2.

9.2 Overview of the Analysis Process 9-3.

9.3 Enabling Memory System Analysis 9-4.

9.4 Defining the Conditions for Analysis 9-5.

9.5 Running Your Program 9-8.

9.6 Viewing the Analysis Data 9-9.

9.7 Summary of Memory System Analysis Commands 9-10.

9.8 Entering Analysis Commands Through a Batch File 9-13.

Chapter 9

Major Functions of Simulator Memory System Analysis

 9-2

9.1 Major Functions of Simulator Memory System Analysis

The ’C6x memory system analysis functionality allows you to set breakpoints
on or count any event that is supported by the simulator core. These events
are added to the Analysis Events dialog box by polling the simulator core to
determine which events it can support.

The ’C6x memory system analysis interface allows you to set breakpoints on
or count the following events, which are supported by the ’C6x:

� Program memory accesses � Off-chip program memory accesses
� Program cache hits � Off-chip data memory accesses
� Program cache misses � Data memory bank conflicts
� Memory stalls

You can set breakpoints on or count multiple events.

Set up event breakpoints

’C6x memory system analysis enables you to set breakpoints on system
events. These events are called break events. You can break on any of the
events supported by the ’C6x core, and you can set a breakpoint on one or
more of these events.

Break events are automatically counted by the event counter. Each break
event is displayed in the Analysis Statistics window, along with the number of
times that break event occurred during each execution of the program, the pro-
gram address on which the last breakpoint occurred, and the name of the rou-
tine in which the breakpoint occurred.

Count system events

You can set up memory system analysis to count occurrences of system
events during the execution of your program. You can count any single event
or any combination of events supported by the ’C6x. Each event that you select
to count is displayed in the Analysis Statistics window, along with the number
of times that event occurs during the execution of your program.

You can use all of the basic debugger step and run commands to determine
the number of occurrences of each selected event that you want to count. The
event counters keep incrementing with each execution of your program unless
you select the Reset Counter button on the Analysis Statistics window. When
you select the Reset Counter button, each of the event counters resets to 0
immediately.

Overview of the Analysis Process

9-3Using Simulator Memory System Analysis

9.2 Overview of the Analysis Process

Completing an analysis session consists of four simple steps:

View the analysis data. See Viewing the Analysis Data,
page 9-9.

Run your program. See Running Your Program,
page 9-8.

Identify the events you want to
track.

See Defining the Conditions for
Analysis, page 9-5.

Enable the analysis module. See Enabling Memory System
Analysis, page 9-4.

Step 1

Step 2

Step 3

Step 4

Enabling Memory System Analysis

 9-4

9.3 Enabling Memory System Analysis

When the debugger comes up, analysis is disabled by default. To begin track-
ing system events, you must explicitly enable analysis by selecting Enable
Analysis on the Analysis menu. When you select Enable Analysis, a check
mark appears next to the menu item, indicating that analysis is enabled. To dis-
able analysis, select Enable Analysis Events again, and the check mark disap-
pears, indicating that analysis is disabled.

Figure 9–1. Enabling/Disabling the Analysis Interface

Toggles

When analysis is disabled, all events you previously enabled remain un-
changed. You can simply reenable analysis and use the events already de-
fined.

During a single debugging session, you may want to change the analysis pa-
rameters several times. For example, you may want to define new parameters
such as counting off-chip memory accesses and tracking data memory bank
conflicts, etc. To do this, you must open the Analysis Events dialog box, delete
any previously defined events that you do not want to monitor, and define the
new events you want to track.

Besides the Analysis menu, you can use the Analysis Events dialog box to en-
able and disable analysis by selecting and deselecting the Enable analysis
events check box. For more information about the Analysis Events dialog box,
see section 9.4 on page 9-5.

Note:

It is not necessary to enable the analysis module each time you run your pro-
gram.

Defining the Conditions for Analysis

9-5Using Simulator Memory System Analysis

9.4 Defining the Conditions for Analysis

Memory system analysis detects system events according to the parameters
you define for counting events or halting the processor.

To track a particular event, you must define the conditions for analysis. To do
this, select the events you want to track by enabling the appropriate conditions
in the Analysis Events dialog box. To bring up the Analysis Events dialog box,
select the Set Up Analysis Events... option on the Analysis menu. Figure 9–2
illustrates the Analysis Events dialog box.

Figure 9–2. Analysis Events Dialog Box

List of events you
defined to monitor

Specifies whether
events are defined
as count or break
events

Define an event
as Break or Count

Add defined event
to list of events to
monitor

Delete selected
event from list of
events to monitor

Close the dialog
box

Bring up online
help for the dialog
box

Select a CPU event
to monitor

Enable and
disable analysis

Defining the Conditions for Analysis

 9-6

Description of available system events

Table 9–1 lists and describes the events in the Analysis Events dialog box that
are available for the TMS320C6x simulator core.

Table 9–1. Description of Analysis Counter Events

Event Description

Program memory access Any program fetch

Program cache hit Any program memory access resulting in a cache hit. Occurs only when cache is
enabled.

Program cache miss Any program memory access resulting in a cache miss. Occurs only when cache
is enabled.

Off-chip program access A program memory access resulting in an external memory access. A single pro-
gram fetch from external memory results in eight off-chip memory accesses.

Off-chip data access A data memory access resulting in an external memory access

Data memory bank conflict Two data accesses occur in the same memory bank resulting in a CPU stall

Memory stall The number of cycles lost due to memory stalls. A memory stall occurs when the
CPU is stalled because the system is unable to provide the data as soon as it is
requested.

Note:

The TMS320C6x simulator core does not fully model the memory system at
this time. The host port interface, the timer, and multichannel buffered serial
ports are not modeled.

Counting system events

Memory system analysis allows you to count multiple system events at one
time. Each event has its own counter. The event count accumulates with each
execution of your program. If you do not want the count to accumulate, reset
the event counters to 0 by selecting the Reset Counter button before you reex-
ecute your program.

You set up count events in the Analysis Events dialog box. To define system
events to count:

1) From the Analysis menu, select Set Up Analysis Events.... The Analysis
Events dialog box appears.

2) In the Add Event section, select the event you want to count from the Event
drop list.

Defining the Conditions for Analysis

9-7Using Simulator Memory System Analysis

3) Select Count from the Event Type drop list.

4) Click the Add button. The event appears in the event list at the top of the
dialog box and in the Analysis Statistics window.

5) Define more events to count, or select the Close button.

Setting event breakpoints

You can set a breakpoint on any event that is supported by the simulator core.
You can set breakpoints on as many events as you choose. The simulator halts
on the first occurrence of any event defined as a break event.

You set up break events in the Analysis Events dialog box. To define system
events on which to set a breakpoint:

1) From the Analysis menu, select Set Up Analysis Events... The Analysis
Events dialog box appears.

2) In the Add Event section, select the event on which you want to set a
breakpoint from the Event drop list.

3) Select Break from the Event Type drop list.

4) Click the Add button. The event appears in the event list at the top of the
dialog box and also in the Analysis Statistics window.

5) Define more events on which to break, or click the Close button.

Removing a defined count or break event

If you decide that you no longer want to count or break on an event, access
the Analysis Events dialog box and complete the following steps:

1) From the event list in the Event section at the top of the dialog box, click
on the event you want to remove.

2) Select the Delete button. The event disappears from the event list.

3) Add or remove other events, or select the Close button.

Running Your Program

 9-8

9.5 Running Your Program

Once you have defined your parameters, analysis can begin collecting data
as soon as you run your program. It stops collecting data when the defined
conditions are met. Memory system analysis monitors the progress of the de-
fined events while your program is running.

To run the entire program, use one of these methods:

� Click the Run icon on the toolbar:

� From the Target menu, select Run.

� Press F5 .

� From the command line, enter the RUN command. The format for this
command is:

run [expression]

You can use any of the debugger run commands (STEP, CSTEP, NEXT, etc.)
described in Chapter 6.

Viewing the Analysis Data

9-9Using Simulator Memory System Analysis

9.6 Viewing the Analysis Data

You can monitor the status of the analysis events by checking the Analysis Sta-
tistics window. This window displays an ongoing progress report of memory
system analysis activity. Through this window, you can monitor the status of
the break events and the number of occurrences of each count event that you
defined.

If you change any of the analysis options in the Analysis Events dialog box, the
Analysis Statistics window updates to reflect the changes you made.

Interpreting the information in the Analysis Statistics window

You can watch the progress of the events that you defined in the Analysis
Events dialog box in the Analysis Statistics window. From this window, you can
also reset the event counters. Figure 9–3 illustrates the Analysis Statistics
window.

Figure 9–3. Analysis Statistics Window Displaying an Ongoing Status Report

Reset all
the event
counters to
0

List of events
defined to
monitor

Event type Number of
times the
event occurs

Address on
which this
break event
occurs

Routine in
which this
break event
occurs

Resetting the event counters

The event counters count each occurrence of a defined event until you reset
them by selecting the Reset Counter button in the Analysis Statistics window.
This means that the counters accumulate occurrences of defined events even
if you reexecute your program. If you do not want the event counters to accu-
mulate, select the Reset Counter button on the Analysis Statistics window.
When you select the Reset Counter button, the event counters reset to 0 im-
mediately.

Summary of Memory System Analysis Commands

 9-10

9.7 Summary of Memory System Analysis Commands

In addition to the memory system analysis interface, the debugger supports
analysis commands that can be entered from the command line or a batch file.
For information on setting up a batch file, see section 9.8 on page 9-13.

The debugger supports several analysis commands that allow you to control
analysis events. Each of these commands are summarized in Table 9–2 and
discussed in detail in the sections following the table.

Table 9–2. Memory System Analysis Command Summary

Command Alias Description

event_enable ee Enables memory system analysis

event_disable ed If no parameter is used, disables memory system analysis. If parameter is
used, disables the specified event.

event_break eb Configures the specified event as a break event

event_counter_start ecs Configures the specified as a count event

event_counter_reset ecr If no parameter is used, resets all event counters to 0. If parameter is used,
resets the counter for the specified event.

event_list el If no parameter is used, lists the configuration for all events in the Command
window. If parameter is used, lists the configuration for the specified event.

event_reset er Disables analysis and resets all event counters to 0

Note: Determining the number assigned to each event

Some commands have a event_number parameter. To determine what num-
ber your simulator core has assigned to each event, use the event_list com-
mand discussed on page 9-12.

event_enable (enable specified event)

The event_enable command enables memory system analysis. When
memory system analysis is enabled, the processor tracks the events that you
define for the processor to monitor. The syntax for the event_enable command
is:

event_enable

Or, use the predefined alias:

ee

To enable analysis through the debugger interface, from the Analysis menu,
select Enable Analysis.

Summary of Memory System Analysis Commands

9-11Using Simulator Memory System Analysis

To enable a particular event through the debugger interface, follow the steps
for defining an event as a count event on page 9-6 or defining an event as
a break event on page 9-7.

event_disable (disable specified event)

If used without a parameter, the event_disable command disables memory
system analysis and resets all event counters. If used with the event_number
parameter, the event_disable command disables the specified event, prevent-
ing you from counting or halting on that event. The syntax for the event_disable
command is:

event_disable [event_number]

Or, use the predefined alias:

ed [event_number]

To disable analysis through the debugger interface, from the Analysis menu,
deselect Enable Analysis.

To disable a particular event through the debugger interface, follow the steps
for removing a defined event on page 9-7.

event_break (set breakpoint on specified event)

The event_break command instructs the processor to halt whenever it en-
counters the specified event. The syntax for the event_break command is:

event_break event_number

Or, use the predefined alias:

eb event_number

To set a breakpoint on a particular event through the debugger interface, follow
the steps for defining an event as a break event on page 9-7.

event_counter_start (count each occurrence of specified event)

The event_counter_start command instructs the processor to count each oc-
currence of the specified event. The syntax for the event_counter_start com-
mand is:

event_counter_start event_number

Or, use the predefined alias:

ecs event_number

To count the occurrences of a particular event through the debugger interface,
follow the steps for defining an event as a count event on page 9-6.

Summary of Memory System Analysis Commands

 9-12

event_counter_reset (reset counter for specified event)

If used without a parameter, the event_counter_reset command resets all
event counters to 0. If used with a parameter, the event_counter_reset com-
mand resets the counter of the specified event to 0. The syntax for the
event_counter_reset command is:

event_counter_reset event_number

Or, use the predefined alias:

ecr event_number

You cannot reset the counter for a specific event through the debugger inter-
face; however, you can reset all the event counters for all the events by select-
ing the Reset Counters button on the Analysis Statistics window. For more in-
formation on the Reset Counters button, see page 9-9.

event_reset (disable and clear configuration for all events)

The event_reset command disables analysis and resets all event counters to
0. The syntax for the event_counter_reset command is:

event_reset

Or, use the predefined alias:

er

To disable all events and reset all event counters through the debugger inter-
face,

1) From the Analysis menu, select Enable Analysis Events.

2) From the Analysis Statistics window, select the Reset Counters button.
For more information on the Reset Counters button, see page 9-9.

event_list (list configuration of all events)

If used without a parameter, the event_list command lists in the Command win-
dow the configuration of all the events. If used with a parameter, the event_list
command lists the configuration for the specified event. The configuration in-
cludes the event name, event number, whether the event is defined as a count
or break event, and the number of occurrences of each count event. The syn-
tax for the event_list command is:

event_list [event_number]

Or, use the predefined alias:

el [event_number]

You also can view the configuration of all analysis events from the debugger
interface in the Analysis Statistics window.

Entering Analysis Commands Through a Batch File

9-13Using Simulator Memory System Analysis

9.8 Entering Analysis Commands Through a Batch File

You can use the memory system analysis commands to set up a batch file that
automatically sets up your most frequently used analysis settings when the de-
bugger is invoked. Example 9–1 is a sample batch file that loads the program
to be analyzed, sets up events to count, enables analysis, runs the program,
logs the analysis results to a log file, and lists the analysis results to the Com-
mand window. For more information on creating and executing a batch file, see
Section 3.3 on page 3-7.

Example 9–1. Sample Memory System Analysis Batch File
;;;
; Sample Command File ;
;;;

load test_prog ;; Load the program to analyse

;; Perform any other setup

event_counter_start 10 ;; Count program memory accesses
event_counter_start 3 ;; Count program cache hits
event_counter_start 4 ;; Count program cache misses

event_enable ;; Enable memory system analysis
run ;; Run the program

dlog analysis.log ;; Store output to log file
event_list ;; List the analysis statistics in
 ;; Command window
dlog close

;; EOF

10-1Monitoring Hardware Functions With the Emulator Analysis Module

Monitoring Hardware Functions With
the Emulator Analysis Module

The ’C6x has an on-chip analysis module that allows the emulator to monitor
hardware functions. Using the analysis module, you can count occurrences of
certain hardware functions or set hardware breakpoints on these occurrences.

You access the analysis features through dialog boxes described in this chap-
ter. These dialog boxes provide a transparent means of loading the special set
of pseudoregisters that the debugger uses to access the on-chip analysis
module.

Topic Page

10.1 Major Functions of the Analysis Module 10-2.

10.2 Overview of the Analysis Process 10-3.

10.3 Enabling the Analysis Module 10-4.

10.4 Defining the Conditions for Analysis 10-5.

10.5 Running Your Program 10-10.

10.6 Viewing the Analysis Data 10-11.

10.7 Creating Customized Analysis Commands 10-12.

10.8 Summary of Analysis Pseudoregisters 10-13.

Chapter 10

Major Functions of the Analysis Module

 10-2

10.1 Major Functions of the Analysis Module

The ’C6x analysis module provides a detailed look into events occurring in
hardware, expanding your debugging capabilities beyond software break-
points. The analysis module examines ’C6x bus cycle information in real time
and reacts to this information through actions such as hardware breakpoints
and event counting. The analysis module allows you to:

� Count events. The analysis module has an internal counter that can
count seven types of events. You can count the number of times a defined
bus event or other internal event occurs during execution of your program.
Events that can be counted include:

� CPU clock cycles � Execute packets
� Pipeline stalls � Interrupt context switches
� Interrupts taken � Branches taken
� NOPs

You can count only one event at a time.

� Set hardware breakpoints. You can also set up the analysis module to
halt the processor during execution of your program. The events that
cause the processor to stop are called break events. You can define a
break event as one or more of the following conditions:

� Any program address
� A low level on the EMU0 pin (EMU0 driven low)
� A low level on the EMU1 pin (EMU1 driven low)

Hardware break events allow you to set breakpoints in ROM and program
memory. In addition, any of the debugger’s basic features available with
software breakpoints can also be used with hardware breakpoints. As a
result, you can take advantage of all the step and most of the run com-
mands.

� Set global breakpoints with EMU0/1 pins. In a system of multiple ’C6x
processors connected by EMU0/1 (emulation event) pins, setting up the
EMU0/1 pins allows you to create global breakpoints. Whenever one pro-
cessor in your system reaches a breakpoint (software or hardware), all
processors in the system can be halted.

In addition to setting global breakpoints, you can set up the EMU0 pin to
take advantage of the emulator’s external counter. Each time the 10-bit in-
ternal counter overflows, a signal is sent through the EMU0 pin, incre-
menting the 32-bit external counter.

Overview of the Analysis Process

10-3Monitoring Hardware Functions With the Emulator Analysis Module

10.2 Overview of the Analysis Process

Completing an analysis session consists of four simple steps:

View the analysis data. See Viewing the Analysis Data,
page 10-11.

Run your program. See Running Your Program,
page 10-10.

Identify the events you want to
track.

See Defining the Conditions for
Analysis, page 10-5.

Enable the analysis module. See Enabling the Analysis
Module, page 10-4.

Step 1

Step 2

Step 3

Step 4

Enabling the Analysis Module

 10-4

10.3 Enabling the Analysis Module

When the debugger comes up, analysis is disabled by default. To begin track-
ing system events, you must explicitly enable analysis by selecting Enable
Analysis on the Analysis menu. When you select Enable Analysis, a check
mark appears next to the menu item, indicating that analysis is enabled. To dis-
able analysis, select Enable Analysis Events again, and the check mark disap-
pears, indicating that analysis is disabled.

Figure 10–1. Enabling/Disabling the Analysis Module

Toggles

When analysis is disabled, all events you previously enabled remain un-
changed. You can simply reenable analysis and use the events already de-
fined.

During a single debugging session, you may want to change the parameters
of the analysis module several times. For example, you may want to define
new parameters such as counting branches, tracking CPU clock cycles, etc.
To do this, you must open the individual dialog boxes, deselect any previous
events, and select the new events you want to track.

You also can enable and disable analysis from the Analysis Events dialog
boxes by selecting and deselecting the Enable analysis events checkbox. For
more information about the Analysis Events dialog boxes, see Section 10.4 on
page 10-5.

Note:

You must enable the analysis module only once during a debugging session.
It is not necessary to enable the analysis module each time you run your pro-
gram.

Defining the Conditions for Analysis

10-5Monitoring Hardware Functions With the Emulator Analysis Module

10.4 Defining the Conditions for Analysis

The analysis module detects hardware events and monitors the internal sig-
nals of the processor according to the parameters you define that count events
or halt the processor.

You must define the conditions the analysis module must meet to track a par-
ticular event. To do this, select the events you want to track by enabling the
appropriate conditions in the Analysis Events dialog boxes. To bring up the
Analysis Events dialog boxes, select the Set Up Analysis Events... option on
the Analysis menu.

Figure 10–2. Analysis Events Dialog Boxes

Count CPU
Events

dialog box

Set Up Set
Up
Hardware
Breakpoints
dialog box

Closes the dialog
box without making
any changes

Brings up online
help for the dialog
box

Applies changes and
closes the dialog box

Enables and
disables
analysis

Defining the Conditions for Analysis

 10-6

Counting events

The analysis module’s internal counter counts bus events and detects other
internal events. This counter keeps track of how many times an event occurs.
The Count CPU Events dialog box allows you to count one of the seven types
of events until the processor halts. These events are listed and described in
Table 10–1.

To count any of the events, simply select that event in the Count CPU Events
dialog box. You can count only one event at a time. Table 10–1 describes the
available events.

Table 10–1. Description of Analysis Counter Events

Event Description

None (disable internal counter) Do not count any events; disable internal counter

CPU clock cycles Count the number of CPU clock cycles

Pipeline stall clock cycles Count the number of CPU clock cycles during a pipeline stall

Interrupt taken Count the number of interrupts detected

Execute packet Count the number of execution packets

Interrupt context switch clock cycles Count the number of CPU clock cycles during an interrupt context
switch

Branch taken Count the number of branches taken

NOP Count the number of NOPs detected

To watch the progress of the event counter, view the status of the event in the
Analysis Statistics window.

If you do not want to count any events, select None to disable the internal
counter.

Defining the Conditions for Analysis

10-7Monitoring Hardware Functions With the Emulator Analysis Module

Enabling the external counter

The emulator’s external counter keeps track of the internal counter. The inter-
nal counter is a 10-bit, decremental counter that can keep track of a maximum
of 1024 events. The external counter, however, is a 32-bit counter. Each time
the internal counter overflows, a signal sent through the EMU0 pin increments
the external counter. To enable the emulator’s external counter, simply select
the external counter checkbox in the Count CPU Events dialog box.

Note:

Enabling the external counter in the Count CPU Events dialog box carries
the following restrictions:

� You can enable only one external counter when you have multiple pro-
cessors (that are connected by their EMU0/1 pins) in a system.

� No other external devices can actively drive the EMU0 pin. The EMU0
pin option is disabled in the Set Up Hardware Breakpoints dialog box.

Defining the Conditions for Analysis

 10-8

Setting hardware breakpoints

You can set a hardware breakpoint, which halts the processor, on three types
of events:

� A specified program address
� EMU0 detected low
� EMU1 detected low

You can select as many events as you want. To specify an event or events on
which to halt the processor, follow these steps:

1) From the Analysis menu, select Hardware Breakpoints.... The Set Up
Hardware Breakpoints dialog box appears.

2) Select the event or events on which you want to set a hardware breakpoint
by clicking the check box(es) next to that event or events.

If you want to enable a hardware breakpoint at a particular program ad-
dress, you can enter the program address as a symbol or value in any for-
mat. If you choose to enter the program address in hexadecimal format, be
sure to begin the address with 0x. You can also select a previously entered
address from the drop-down list.

Defining the Conditions for Analysis

10-9Monitoring Hardware Functions With the Emulator Analysis Module

Setting up the EMU0/1 pins to set global breakpoints

By default, the EMU0/1 pins are set up as input signals; however, you can set
them up as output signals or trigger out whenever the processor is halted by
a software or hardware breakpoint. This is extremely useful when you have
multiple ’C6x processors in a system connected by their EMU0/1 pins.

To set the EMU0/1 pins to output, select the check box next to the EMU pin on
which you want to output in the Select trigger out pin(s) for hardware break
event(s) field in the Set Up Hardware Breakpoints dialog box.

Selecting EMU0/1 does not, however, automatically halt all processors in the
system. To do so, you must enable the EMU0/1 driven-low condition in the Set
Up Hardware Breakpoints dialog box. For example, if you have a system con-
sisting of two processors connected by their EMU1 pins and you want to halt
both processors when this pin is driven low, you must enable the EMU1 driven
low option in the Set Up Hardware Breakpoints dialog box of one of the proces-
sors, as shown in Figure 10–3.

Figure 10–3. EMU1 Pin Set Up to Trigger Out on Hardware Break Events

Hardware
breakpoints set

EMU0 pin
disabled; external

counter in use

EMU1 pin set
to trigger out
on set hard-
ware break
events

When processor 1 halts, its EMU1 signal halts processor 2. Setting up each
processor in this way creates a global breakpoint so that any processor that
reaches a breakpoint halts all other processors in the system.

Running Your Program

 10-10

10.5 Running Your Program

Once you have defined your parameters, the analysis module can begin col-
lecting data as soon as you run your program. It stops collecting data when the
defined conditions are met. The analysis module monitors the progress of the
defined events while your program is running.

Note:

The conditions for the analysis session must be defined before your analysis
session begins; you cannot change conditions during execution of your pro-
gram.

How to run the entire program

To run the entire program, use one of these methods:

� Click the Run icon on the toolbar:

� From the Target menu, select Run.

� Press F5 .

� From the command line, enter the RUN command. The format for this
command is:

run [expression]

You can use any of the debugger run commands (STEP, CSTEP, NEXT, etc.)
described in Chapter 6 except the RUNB (run benchmarks) or RUNF (run free)
command.

How the Run Benchmarks (RUNB) command affects analysis

Running your program by selecting the Run Benchmarks option from the Tar-
get menu or entering the RUNB command from the command line disables the
current analysis settings and configures the counter to count CPU clock
cycles. When the processor is halted after a RUNB, the analysis registers are
restored to their original states.

The analysis module provides capabilities in addition to those provided by the
RUNB command. With the RUNB command you can count the number of CPU
clock cycles only during the execution of a specific section of code. However,
the analysis module not only allows you to count CPU clock cycles, it also al-
lows you to count other events.

Viewing the Analysis Data

10-11Monitoring Hardware Functions With the Emulator Analysis Module

10.6 Viewing the Analysis Data

You can monitor the status of the analysis module by checking the Analysis
Statistics window. This window displays an ongoing progress report of the
analysis module’s activity. Through this window, you can monitor the status of
the break events, the value of both the internal and external event counters,
and the status of the EMU0/1 events.

Interpreting the information in the Analysis Statistics window

You can watch the progress of the events that you defined in the Analysis
Events dialog box in the Analysis Statistics window. From this window, you can
also change the display rate of the information in the window. If you change
any of the analysis options in the analysis dialog boxes, the Analysis Statistics
window updates to reflect the changes you made. Figure 10–4 illustrates the
Analysis Statistics window.

Figure 10–4. Analysis Statistics Window Displaying an Ongoing Status Report

List of events
defined to
monitor

Event type Number of
times the
event occurs

Address on
which this
break event
occurs

Routine in
which this
break event
occurs

Creating Customized Analysis Commands

 10-12

10.7 Creating Customized Analysis Commands

The interface to the ’C6x emulator analysis module is register based. You can
set up hardware breakpoints or counter events through the Analysis menu dia-
log boxes. In some cases, however, you may want to define more complex
conditions for the processor to detect. Or, you may want to write a batch file
that defines breakpoint and/or counter conditions. In either case, you can
accomplish these tasks by accessing the analysis registers through the
debugger.

By manipulating the analysis registers, you can customize commands for
more complex instructions that do not exist on the Hardware Breakpoints or
Count CPU Events dialog boxes. Use the ALIAS and EVAL commands to
create your own commands. The basic syntax for creating customized analy-
sis commands is:

alias command_name, “eval register name = bit value”

For example, to create a new command for turning on the analysis module,
enter:

alias analysis_on, ”eval AEN = 3”

To create a new command to enable the external emulator counter, enter:

alias xcount, ”eval ACE = 0x22”

Summary of Analysis Pseudoregisters

10-13Monitoring Hardware Functions With the Emulator Analysis Module

10.8 Summary of Analysis Pseudoregisters

To create your own analysis commands, you must familiarize yourself with the
seven analysis registers and how they work. The following subsections dis-
cuss the analysis registers briefly.

AEN (enable analysis)

You can enable and disable the analysis module and set the EMU0/1 pins to
trigger out by using the AEN register. Set the bit to 1 to enable or to 0 to disable.

Bit Number
Bit Field Value

(in Hex) Definition

0:1 Enable/disable analysis module

0 Disable analysis module

1 Reserved

2 Reserved

3 Enable analysis module

2 Reserved

3 Select EMU0 trigger out

4 Select EMU1 trigger out

When you disable analysis, all registers except AEN retain their previous state.

ABE (configure hardware breakpoints)

The ABE register configures hardware breakpoint events. Set the bit to 1 to
enable or to 0 to disable. The hardware breakpoint event bits are defined as
follows:

Bit Number Definition

0 Enable program address breakpoint

1 Enable breakpoint when EMU0 is driven low

2 Enable breakpoint when EMU1 is driven low

Hardware breakpoints do not halt the processor during a step. If the hardware
breakpoint is set on the same instruction as a software breakpoint, hardware
breakpoints do not halt the processor.

ADR (program address breakpoint value)

The ADR register holds the 32-bit value of the program address breakpoint.

Summary of Analysis Pseudoregisters

 10-14

ACE (configure analysis counter events)

The ACE register configures the analysis counter to count a defined event. Set
the bit to 1 to enable or to 0 to disable. The counter event bits are defined as
follows:

Bit Number
Bit Field Value

(in Hex) Definition

0:1 Defines counter mode

0 Counter disabled

1 Reserved

2 Performance counting

3 Error generated

2:4 Selects counter event

0 Clock

1 Execution packet

2 Pipeline stall

3 Interrupt context switch

4 Interrupt acknowledge

5 Branch taken

6 NOP

7 Non-NOP instructions

5 Enable external emulator counter

ICNT (internal counter value)

The ICNT register holds the 10-bit value of the internal counter.

XCNT (external counter value)

The XCNT register holds the 32-bit value of the internal counter.

AST (analysis status)

The AST register records the occurrence of enabled events. Set the bit to 1
to enable or to 0 to disable. The status bits are defined as follows:

Bit Number Definition

0 Program address breakpoint

1 EMU0 driven low breakpoint

2 EMU1 driven low breakpoint

Run commands do not interfere with the status bits because the status bits are
cleared before command execution.

11-1Using the Parallel Debug Manager

Using the Parallel Debug Manager

The TMS320C6x emulation system is a true multiprocessing debugging
system. It allows you to debug your entire application by using the parallel
debug manager (PDM). The PDM is a command shell that controls and coordi-
nates multiple debuggers. This chapter describes the functions that you can
perform with the PDM.

See Chapter 2, Getting Started With the Debugger, for information about
invoking the PDM and debuggers.

Topic Page

11.1 Identifying Processors and Groups 11-2.

11.2 Sending Debugger Commands to One or More Debuggers 11-6.

11.3 Running and Halting Code 11-7.

11.4 Entering PDM Commands 11-9.

11.5 Defining Your Own Command Strings 11-15.

11.6 Entering Operating-System Commands 11-16.

11.7 Understanding the PDM’s Expression Analysis 11-17.

11.8 Using System Variables 11-18.

11.9 Evaluating Expressions 11-21.

Chapter 11

Identifying Processors and Groups

 11-2

11.1 Identifying Processors and Groups

You can send commands to an individual processor or to a group of proces-
sors. To do this, you must assign names to the individual processors or to
groups of processors. Individual processor names are assigned when you in-
voke the individual debuggers; you can assign group names with the SET
command after the individual processor names have been assigned.

Note:

Each debugger that runs under the PDM must have a unique processor
name. The PDM does not keep track of existing processor names. When you
send a command to a debugger, the PDM will validate the existence of a de-
bugger invoked with that processor name.

Assigning names to individual processors

You must associate each debugger within the multiprocessing system with a
unique name, referred to as a processor name. The processor name is used
for:

� Identifying a processor to send commands to

� Assigning a processor to a group

� Setting the default prompts for the associated debuggers. For example,
if you invoke a debugger with the processor name CPU_A, that debug-
ger’s prompt will be CPU_A>.

� Identifying the individual debuggers on the screen (Sun systems only).
The processor name that you assign will appear at the top of the operating-
system window that contains the debugger. Additionally, if you turn one of
the windows into an icon, the icon name is the same as the processor
name that you assigned.

To assign a processor name, you can use the –n option when you invoke a de-
bugger. For example, to name one of the ’C6x processors CPU_B, you would
use the following command to invoke the debugger:

spawn emu6x –n CPU_B

From this point on, whenever you needed to identify this debugger, you could
identify it by its processor name, CPU_B.

The processor name that you supply can consist of up to eight alphanumeric
characters or underscore characters and must begin with an alphabetic char-
acter. The name is not case sensitive. The processor name must match one
of the names defined in your board configuration file (refer to Appendix B, De-
scribing Your Target System to the Debugger).

Identifying Processors and Groups

11-3Using the Parallel Debug Manager

Organizing processors into groups

You can organize processors into groups by using the SET command to group
processors under one name. Each processor can belong to any group, all
groups, or a group of its own. Figure 11–1 (a) shows an example of processors
in a system, and Figure 11–1 (b) illustrates three examples of named groups.
GROUP1 contains two processors, GROUP2 contains four processors, and
GROUP3 contains five processors.

Figure 11–1.Grouping Processors

(a) All possible processors in a system

CPU_A
debugger

CPU_B
debugger

CPU_C
debugger

CPU_D
debugger

CPU_E
debugger . . .

(b) Examples of how processors could be grouped

GROUP1 GROUP2 GROUP3
CPU_A

debugger

CPU_C
debugger

CPU_A
debugger

CPU_B
debugger

CPU_D
debugger

CPU_E
debugger

CPU_B
debugger

CPU_C
debugger

CPU_D
debugger

CPU_E
debugger

CPU_A
debugger

Identifying Processors and Groups

 11-4

To define and manipulate software groupings of named processors, use the
SET and UNSET commands.

� Defining a group of processors

To define a group, use the SET command. The format for this command is:

set [group name [= list of processor names]]

This command allows you to specify a group name and the list of proces-
sors you want in the group. The group name can consist of up to 128 alpha-
numeric characters or underscore characters.

For example, to create the GROUP1 group illustrated in Figure 11–1 (b),
you could enter the following on the PDM command line:

set GROUP1 = CPU_A CPU_C

The result is a group called GROUP1 that contains the processors named
CPU_A and CPU_C. The order in which you add processors to a group is
the same order in which commands will be sent to the members of that
group.

� Setting the default group

Many of the PDM commands can be sent to groups; if you often send com-
mands to the same group and you want to avoid typing the group name
each time, you can assign a default group.

To set the default group, use the SET command with a special group name
called dgroup. For example, if you want the default group to contain the
processors called CPU_B, CPU_D, and CPU_E, enter:

set dgroup = CPU_B CPU_D CPU_E

The PDM automatically sends commands to the default group when you
do not specify a group name.

� Modifying an existing group or creating a group based on another
group

Once you have created a group, you can add processors to it by using the
SET command and preceding the existing group name with a dollar sign
($) in the list of processors. You can also use a group as part of another
group by preceding the existing group’s name with a dollar sign. The dollar
sign tells the PDM to use the processors listed previously in the group as
part of the new list of processors.

Suppose GROUPA contained CPU_C and CPU_D. If you wanted to add
CPU_E to the group, you would enter:

set GROUPA = $GROUPA CPU_E

Identifying Processors and Groups

11-5Using the Parallel Debug Manager

After entering this command, GROUPA would contain CPU_C, CPU_D,
and CPU_E.

If you decided to send numerous commands to GROUPA, you could make
it the default group:

set dgroup = $GROUPA

� Listing all groups of processors

To list all groups of processors in the system, use the SET command with-
out any parameters:

set

The PDM lists all of the groups and the processors associated with them:

GROUP1 ”CPU_A CPU_C”
GROUPA ”CPU_C CPU_D CPU_E”
dgroup ”CPU_C CPU_D CPU_E”

You can also list all of the processors associated with a particular group by
supplying a group name:

set dgroup
dgroup ”CPU_C CPU_D CPU_E”

� Deleting a group

To delete a group, use the UNSET command. The format for this com-
mand is:

unset group name

You can use this command in conjunction with the SET command to re-
move a particular processor from a group. For example, suppose
GROUPB contained CPU_A, CPU_C, CPU_D, and CPU_E. If you wanted
to remove CPU_E, you could enter:

unset GROUPB
set GROUPB = CPU_A CPU_C CPU_D

If you want to delete all of the groups you have created, use the UNSET
command with an asterisk instead of a group name:

unset *

The asterisk does not work as a wild card.

Note:

When you use UNSET * to delete all of your groups, the default group
(dgroup) is also deleted. As a result, if you issue a command such as PRUN
and do not specify a group or processor, the command will fail because the
PDM cannot find the default group name (dgroup).

Sending Debugger Commands to One or More Debuggers

 11-6

11.2 Sending Debugger Commands to One or More Debuggers

The SEND command sends a debugger command to an individual processor
or to a group of processors. The command is sent directly to the command in-
terpreter of the individual debuggers. You can send any valid debugger com-
mand string.

The syntax for the SEND command is:

send [–r] [–g {group | processor name}] debugger command

� The –g option specifies the group or processor that the debugger com-
mand should be sent to. If you do not use this option, the command is sent
to the default group (dgroup).

� The –r (return) option determines when control returns to the PDM com-
mand line:

� Without –r , control is not returned to the command line until each de-
bugger in the group finishes running code. Any results that would be
printed in the COMMAND window of the individual debuggers will also
be echoed in the PDM command window. These results will be dis-
played by the processor. For example:

send ?pc
[CPU_C] 0x200A
[CPU_D] 0x2008

If you want to break out of a synchronous command and regain control
of the PDM command line, press CONTROL C in the PDM window. This
will return control to the PDM command line. However, no debugger
executing the command will be interrupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. When you use –r, you do not
see the results of the commands that the debuggers are executing.

The –r option is useful when you want to exit from a debugger but not
from the PDM. When you send the QUIT command to a debugger or
group of debuggers without using the –r command, you will not be able
to enter another PDM command until all debuggers that QUIT was
sent to finish quitting; the PDM waits for a response from all of the
debuggers that are quitting. By using –r, you can gain immediate con-
trol of the PDM and continue sending commands to the remaining
debuggers.

The SEND command is useful for loading a common object file into a group
of debuggers. For example, to load a file called test.out into the debuggers
contained in GROUP_A, you could use the following command:

send –g GROUP_A load test.out

Running and Halting Code

11-7Using the Parallel Debug Manager

11.3 Running and Halting Code

The PRUN, PRUNF, and PSTEP commands synchronize the debuggers to
cause the processors to begin execution at the same real time.

� PRUNF starts the processors running free, which means they are discon-
nected from the emulator.

� PRUN starts the processors running under the control of the emulator.

� PSTEP causes the processors to single-step synchronously through as-
sembly language code with interrupts disabled.

The formats for these commands are:

prunf [–g {group | processor name}]

prun [–r] [–g {group | processor name}]

pstep [–g {group | processor name}] [count]

� The –g option identifies the group or processor that the command should
be sent to. If you do not use this option, the command is sent to the default
group (dgroup).

� The –r (return) option for the PRUN command determines when control
returns to the PDM command line:

� Without –r , control is not returned to the command line until each
debugger in the group finishes running code. If you want to break out
of a synchronous command and regain control of the PDM command
line, press CONTROL C in the PDM window. This will return control to
the PDM command line. However, no debugger executing the com-
mand will be interrupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. You can type new commands,
but the processors cannot execute the commands until they finish with
the current command; however, you can perform PHALT, PESC, and
STAT commands when the processors are still executing.

� You can specify a count for the PSTEP command so that each processor
in the group will step for count number of times.

Note:

If the current statement that a processor is pointing to has a breakpoint, that
processor will not step synchronously with the other processors when you
use the PSTEP command. However, that processor will still single-step.

Running and Halting Code

 11-8

Halting processors at the same time

You can use the PHALT command after you enter a PRUNF command to stop
an individual processor or a group of processors (global halt). Each processor
in the group is halted at the same real time. The syntax for the PHALT com-
mand is:

phalt [–g {group | processor name}]

Sending ESCAPE to all processors

Use the PESC command to send the escape key to an individual processor
or to a group of processors after you execute a PRUN command. Entering
PESC is essentially like typing an escape key in all of the individual debuggers.
However, the PESC command is asynchronous; the processors do not halt at
the same real time. When you halt a group of processors, the individual pro-
cessors are halted in the order in which they were added to the group.

The syntax for this command is:

pesc [–g {group | processor name}]

Finding the execution status of a processor or a group of processors

The STAT command tells you whether a processor is running or halted. If a pro-
cessor is halted when you execute this command, then the PDM also lists the
current PC value for that processor. The syntax for the command is:

stat [–g {group | processor name}]

For example, to find the execution status of all of the processors in GROUP_A
after you have executed a global PRUN, enter:

stat –g GROUP_A

After entering this command, you will see something similar to this in the PDM
window:

[CPU_C] Running
[CPU_D] Halted PC=201A
[CPU_E] Running

Entering PDM Commands

11-9Using the Parallel Debug Manager

11.4 Entering PDM Commands
The PDM provides a flexible command-entry interface that allows you to:

� Execute PDM commands from a batch file
� Record the information shown in the PDM display area
� Conditionally execute or loop through PDM commands
� Echo strings to the PDM display area
� Pause command execution
� Repeat previously entered commands (use the command history)

This section describes the PDM commands that you can use to perform these
tasks.

Executing PDM commands from a batch file

The TAKE command tells the PDM to execute commands from a batch file.
The syntax for the PDM version of this command is:

take batch filename

The batch filename must have a .pdm extension, or the PDM will not be able
to read the file. If you do not supply a pathname as part of the filename, the
PDM first looks in the current directory and then searches directories named
with the D_DIR environment variable.

The TAKE command is similar to the debugger version of this command (de-
scribed on page 12-55). However, there are some differences when you enter
TAKE as a PDM command instead of a debugger command.

� Similarities. As with the debugger version of the TAKE command, you
can nest batch files up to 10 deep.

� Differences. Unlike the debugger version of the TAKE command:

� There is no suppress-echo-flag parameter. Therefore, all command
output is echoed to the PDM window, and this behavior cannot be
changed.

� To halt batch-file execution, you must press CONTROL C instead of
ESC .

� The batch file must contain only PDM commands (no debugger com-
mands).

The TAKE command is advantageous for executing a batch file in which you
have defined often-used aliases. Additionally, you can use the SET command
in a batch file to set up group configurations that you use frequently, and then
execute that file with the TAKE command. You can also put your flow-control
commands (described in Controlling PDM command execution on page
11-10) in a batch file and execute the file with the TAKE command.

Entering PDM Commands

 11-10

Recording information from the PDM display area

By using the DLOG command, you can record the information shown in the
PDM display area into a log file. This command is identical to the debugger
DLOG command described on page 12-20.

� To begin recording the information shown in the PDM display area, use:

dlog filename

This command opens a log file called filename that the information is
recorded into. If you plan to execute the log file with the TAKE command,
the filename must have a .pdm extension.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters control how the log file is created and/or used:

� Appending to an existing file. Use the a parameter to open an existing
file and append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file and write over the current contents of the file. This is the default action
if you specify an existing filename without using either the a or w options;
you will lose the contents of an existing file if you do not use the append
(a) option.

Controlling PDM command execution

You can control the flow of PDM commands in a batch file or interactively. With
the IF/ELIF/ELSE/ENDIF or LOOP/BREAK/CONTINUE/ENDLOOP flow-
control commands, you can conditionally execute debugger commands or set
up a looping situation, respectively.

� To conditionally execute PDM commands, use the IF/ELIF/ELSE/ENDIF
commands. The syntax is:

if expression
PDM commands
[elif expression
PDM commands]
[else
PDM commands]
endif

Entering PDM Commands

11-11Using the Parallel Debug Manager

� If the expression for the IF is nonzero, the PDM executes all com-
mands between the IF and the ELIF, ELSE, or ENDIF.

� The ELIF is optional. If the expression for the ELIF is nonzero, the
PDM executes all commands between the ELIF and the ELSE or
ENDIF.

� The ELSE is optional. If the expressions for the IF and ELIF (if present)
are false (zero), the PDM executes the commands between the ELSE
and the ENDIF.

� To set up a looping situation to execute PDM commands, use the LOOP/
BREAK/CONTINUE/ENDLOOP commands. The syntax is:

loop Boolean expression
PDM commands
[break]
[continue]
endloop

The PDM version of the LOOP command is different from the debugger
version of this command (described on page 12-29). Instead of accepting
any expression, the PDM version of the LOOP command evaluates only
Boolean expressions. If the Boolean expression evaluates to true (1), the
PDM executes all commands between the LOOP and the BREAK, CON-
TINUE, or ENDLOOP. If the Boolean expression evaluates to false (0), the
loop is not entered.

� The optional BREAK command allows you to exit the loop without hav-
ing to reach the ENDLOOP. This is helpful when you are testing a
group of processors and want to exit if an error is detected.

� The CONTINUE command, which is also optional, acts as a goto and
returns command flow to the enclosing LOOP command. CONTINUE
is useful when the part of the loop that follows is complicated, and re-
turning to the top of the loop avoids further nesting.

You can enter the flow-control commands interactively or include the com-
mands in a batch file that is executed by the TAKE command. When you enter
LOOP or IF from the PDM command line, a question mark (?) prompts you for
the next entry:

PDM:11>>if $i > 10
?echo ERROR IN TEST CASE
?endif
ERROR IN TEST CASE

PDM:12>>

Entering PDM Commands

 11-12

The PDM continues to prompt you for input using the ? until you enter ENDIF
(for an IF command) or ENDLOOP (for a LOOP command). After you enter
ENDIF or ENDLOOP, the PDM immediately executes the IF or LOOP com-
mand.

If you are in the middle of interactively entering a LOOP or IF statement and
want to abort it, type CONTROL C .

You can use the IF/ENDIF and LOOP/ENDLOOP commands together to per-
form a series of tests. For example, within a batch file, you can create a loop
like the following (the SET and @ commands are described in section 11.8,
beginning on page 11-18):

set i = 10 Set the counter (i) to 10.
loop $i > 0 Loop while i is greater than 0.

.
test commands
.
if $k > 500 Test for error condition.

echo ERROR ON TEST CASE 8 Display an error message.
endif
.
@ i = $i – 1 Decrement the counter.

endloop

You can record the results of this loop in a log file (refer to page 11-10) to
examine which test cases failed during the testing session.

Echoing strings to the PDM display area

You can display a string in the PDM display area by using the ECHO command.
This command is especially useful when you are executing a batch file or run-
ning a flow-control command such as IF or LOOP. The syntax for the command
is:

echo string

This displays the string in the PDM display area.

You can also use ECHO to show the contents of a system variable (system
variables are described in section 11.8):

echo $var_proc1
34

The PDM version of the ECHO command works in exactly the same way as
the debugger version described on page 12-21 works, except that you can use
the PDM version outside of a batch file.

Entering PDM Commands

11-13Using the Parallel Debug Manager

Pausing command execution

Sometimes you may want the PDM to pause while it is running a batch file or
when it is executing a flow control command such as LOOP/ENDLOOP. Paus-
ing is especially helpful in debugging the commands in a batch file.

The syntax for the PAUSE command is:

pause

When the PDM reads this command in a batch file or during a flow control com-
mand segment, the PDM stops execution and displays the following message:

<< pause – type return >>

To continue processing, press .

Using the command history

The PDM supports a command history that is similar to the UNIX command
history. The PDM prompt identifies the number of the current command. This
number is incremented with every command. For example, PDM:12>> indi-
cates that eleven commands have previously been entered, and the PDM is
now ready to accept the twelfth command.

The PDM command history allows you to re-enter any of the last twenty com-
mands:

� To repeat the last command that you entered, type:

!!

� To repeat any of the last twenty commands, use the following command:

!number

number is the number of the PDM prompt that contains the command that
you want to re-enter. For example,

PDM:100>>echo hello
hello
PDM:101>>echo goodbye
goodbye
PDM:102>> !100
echo hello
hello

Notice that the PDM displays the command that you are re-entering.

Entering PDM Commands

 11-14

� An alternate way to repeat any of the last twenty commands is to use:

!string

This command tells the PDM to execute the last command that began with
string. For example,

PDM:103>>pstep –g GROUPA
PDM:104>>send –g GROUPA ?pc
[CPU_C] 0x2000
[CPU_D] 0x2004
PDM:103>>pstep –g GROUPB
PDM:104>>send –g GROUPB ?pc
[CPU_A] 0x201A
[CPU_E] 0x2014
PDM:105>> !p
pstep –g GROUPB

� To see a list of the last twenty commands that you entered, type:

history

The command history for the PDM works differently from that of the debugger;
the TAB and F2 keys have no command-history meaning for the PDM.

Defining Your Own Command Strings

11-15Using the Parallel Debug Manager

11.5 Defining Your Own Command Strings

The ALIAS command provides a shorthand method of entering often-used
commands or command sequences. The UNALIAS command deletes one or
more ALIAS definitions. The syntax for the PDM version of each of these com-
mands is:

alias [alias name [, ”command string”]]
unalias {alias name | *}

The PDM versions of the ALIAS and UNALIAS commands are similar to the
debugger versions of these commands. You can:

� Include several commands in the command string by separating the indi-
vidual commands with semicolons

� Define parameters in the command string by using a percent sign and a
number (%1, %2, etc.) to represent a parameter whose value will be sup-
plied when you execute the aliased command

� List all currently defined PDM aliases by entering ALIAS with no parame-
ters

� Find the definition of a PDM alias by entering ALIAS with only an alias-
name parameter

� Nest alias definitions

� Redefine an alias

� Delete a single PDM alias by supplying the UNALIAS command with an
alias name or delete all PDM aliases by entering UNALIAS *

Like debugger aliases, PDM alias definitions are lost when you exit the PDM.
However, individual commands within a PDM command string do not have an
expanded-length limit.

For more information about these features, see section 3.1, Defining Your
Own Command Strings.

The PDM version of the ALIAS command is especially useful for aliasing often-
used command strings involving the SEND and SET commands.

� You can use the ALIAS command to create PDM versions of debugger
commands. For example, the ML debugger command lists the memory
ranges that are currently defined. To make a PDM version of the ML com-
mand to list the memory ranges of all the debuggers in a particular group,
enter:

alias ml, ”send –g %1 ml”

Entering Operating-System Commands

 11-16

You could then list the memory maps of a group of processors such as
those in group GROUPA:

ml GROUPA

� The ALIAS command can be helpful if you frequently change the default
group. For example, suppose you plan to switch between two groups. You
can set up the following alias:

alias switch, ”set dgroup $%1; set prompt %1”

The %1 parameter will be filled in with the group information that you enter
when you execute SWITCH. Notice that the %1 parameter is preceded by
a dollar sign ($) to set up the default group. The dollar sign tells the PDM to
evaluate (take the list of processor names defined in the group instead of
the actual group name). However, to change the prompt, you do not want
the PDM to evaluate (use the processors associated with the group name
as the prompt)—you just want the group name. As a result, you do not
need to use the dollar sign when you want to use only the group name.

Assume that GROUP3 contains CPU_A, CPU_B, and CPU_D. To make
GROUP3 the current default group and make the PDM prompt the same
name as your default group, enter:

switch GROUP3

This causes the default group (dgroup) to contain CPU_A, CPU_B, and
CPU_D, and it changes the PDM prompt to GROUP3:x>>.

11.6 Entering Operating-System Commands
The SYSTEM command provides you with a method of entering operating-
system commands. The format for the PDM version of this command is:

system operating-system command

The SYSTEM command is similar to the debugger’s SYSTEM command (de-
scribed on page 3-5), but there are some differences.

� Similarities. You can enter operating-system commands without having
to leave the primary environment (in this case, the PDM) and without hav-
ing to open another operating-system window.

� Differences. Unlike the debugger version of the SYSTEM command:

� The PDM version of the SYSTEM command cannot be entered with-
out an operating-system command parameter. Therefore, you cannot
use the command to open a shell.

� There is no flag parameter; command output is always displayed in
the PDM window.

Defining Your Own Command Strings / Entering Operating-System Commands

Understanding the PDM’s Expression Analysis

11-17Using the Parallel Debug Manager

11.7 Understanding the PDM’s Expression Analysis

The PDM analyzes expressions differently than individual debuggers do (ex-
pression analysis for the debugger is described in Chapter 13, Basic Informa-
tion About C Expressions). The PDM uses a simple integral expression ana-
lyzer. You can use expressions to cause the PDM to make decisions as part
of the @ command and the flow control commands (described on pages 11-19
and 11-10, respectively).

You cannot evaluate string variables with the PDM expression analyzer. You
can evaluate only constant expressions.

Table 11–1 summarizes the PDM operators. The PDM interprets the operators
in the order in which they are listed in Table 11–1 (left to right, top to bottom).

Table 11–1. PDM Operators

Operator Definition Operator Definition

() take highest precedence * multiplication

/ division % modulo

+ addition (binary) – subtraction (binary)

< < left shift ~ complement

< less than > > right shift

> greater than < = less than or equal to

= = is equal to > = greater than or equal to

& bitwise AND ! = is not equal to

| bitwise OR ^ bitwise exclusive-OR

| | logical OR && logical AND

Using System Variables

 11-18

11.8 Using System Variables

You can use the SET, @, and UNSET commands to create, modify, and delete
system variables. In addition, you can use the SET command with system-
defined variables.

Creating your own system variables

The SET command lets you create system variables that you can use with
PDM commands. The syntax for the SET command is:

set [variable name [= string]]

The variable name can consist of up to 128 alphanumeric characters or under-
score characters.

For example, suppose you have an array that you want to examine frequently.
You can use the SET command to define a system variable that represents
that array value:

set result = ar1[0] + 100

In this case, result is the variable name, and ar1[0] + 100 is the expression that
will be evaluated whenever you use the variable result.

Once you have defined result, you can use it with other PDM commands, such
as the SEND command:

send CPU_D ? $result

The dollar sign ($) tells the PDM to replace result with ar1[0] + 100 (the string
defined in result) as the expression parameter for the ? command. You must
precede the name of a system variable with a $ when you want to use the string
value you defined with the variable as a parameter.

You can also use the SET command to concatenate and substitute strings.

� Concatenating strings

The dollar sign followed by a system variable name enclosed in braces
({ and }) tells the PDM to append the contents of the variable name to a
string that precedes or follows the braces. For example:

set k = Hel Set k to the string Hel.
set i = ${k}lo ${k}en Concatenate the contents of k before

lo and en, and set the result to i.
echo $i Show the contents of i.
Hello Helen

Using System Variables

11-19Using the Parallel Debug Manager

� Substituting strings

You can substitute defined system variables for parts of variable names or
strings. This series of commands illustrates the substitution feature:

set err0 = 25 Set err0 to 25.
set j = 0 Set j to 0.
echo errj Show the value of errj → $err0 → 25.
25

Substitution stops when the PDM detects recursion (for example, $k = k).

Assigning a variable to the result of an expression

The @ (substitute) command is similar to the SET command. You can use the
@ command to assign the result of an expression to a variable. The syntax for
the @ command is:

@ variable name = expression

The following series of commands illustrates the differences between the @
command and the SET command. Assume that mask1 equals 36 and mask2
equals 47.

set mask3 = $mask1+$mask2 Set mask3 to the contents of mask1
plus the contents of mask2.

echo $mask3 Show the contents of mask3.
36+47

@ mask3 = $mask1+$mask2 Set mask3 to the result of the
expression $mask1+$mask2.

echo $mask3 Show the contents of mask3.
83

Notice the difference between the two commands. The SET command lets you
create system variables that you can use with PDM commands. The @ com-
mand evaluates the expression and assigns the result to the variable name.

The @ command is useful in setting loop counters. For example, you can ini-
tialize a counter with the following command:

@ j = 0

Inside the loop, you can increment the counter with the following statement:

@ j = $j + 1

Changing the PDM prompt

The PDM recognizes a system variable called prompt. You can change the
PDM prompt by setting the prompt variable to a string. For example, to change
the PDM prompt to 3PROCs, enter:

set prompt = 3PROCs

After entering this command, the PDM prompt will look like this: 3PROCs:x>>.

Using System Variables

 11-20

Checking the execution status of the processors

In addition to displaying the execution status of a processor or group of proces-
sors, the STAT command (described on page 11-8) sets a system variable
called status.

� If all of the processors in the specified group are running, the status vari-
able is set to 1.

� If one or more of the processors in the group is halted, the status variable
is set to 0.

You can use this variable when you want an instruction loop to execute until
a processor halts:

loop stat == 1
send ?pc
.
.

Listing system variables

To list all system variables, use the SET command without parameters:

set

You can also list the contents of a single variable. For example,

set j
j ”100”

Deleting system variables

To delete a system variable, use the UNSET command. The format for this
command is:

unset variable name

If you want to delete all of the variables you have created and any groups you
have defined (as described on page 11-4), use the UNSET command with an
asterisk instead of a variable name:

unset *

Note:

When you use UNSET * to delete all of your system variables and processor
groups, variables such as prompt, status, and dgroup are also deleted.

Evaluating Expressions

11-21Using the Parallel Debug Manager

11.9 Evaluating Expressions

The debugger includes an EVAL command that evaluates an expression (see
section 7.3, Basic Commands for Managing Data, for more information about
the debugger version of the EVAL command). The PDM has a similar com-
mand called EVAL that you can send to a processor or a group of processors.
The EVAL command evaluates an expression in a debugger and sets a vari-
able to the result of the expression. The syntax for the PDM version of the
EVAL command is:

eval [–g {group | processor name}] variable name=expression[, format]

� The –g option specifies the group or processor that EVAL should be sent
to. If you do not use this option, the command is sent to the default group
(dgroup).

� When you send the EVAL command to more than one processor, the PDM
takes the variable name that you supply and appends a suffix for each pro-
cessor. The suffix consists of the underscore character (_) followed by the
name that you assigned the processor. That way, you can differentiate be-
tween the resulting variables.

� The expression can be any expression that uses the symbols described
in section 11.7.

� When you use the optional format parameter, the value that the variable
is set to will be in one of the following formats:

Parameter Format Parameter Format

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Suppose the program that CPU_A is running has two variables defined: j is
equal to 5, and k is equal to 17. Also assume that the program that CPU_B is
running contains variables j and k: j is equal to 12, and k is equal to 22.

set dgroup = CPU_A CPU_B
eval val = j + k
set
dgroup ”CPU_A CPU_B”
val_CPU_A ”22”
val_CPU_B ”34”

Notice that the PDM created a system variable for each processor:
val_CPU_A for CPU_A and val_CPU_B for CPU_B.

12-1

Summary of Commands

This chapter describes the basic debugger and PDM commands and profiling
commands.

Topic Page

12.1 Functional Summary of Debugger Commands 12-2.

12.2 Alphabetical Summary of Debugger and PDM Commands 12-11.

12.3 Summary of Profiling Commands 12-62.

Chapter 12

Functional Summary of Debugger Commands

 12-2

12.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these catego-
ries:

� Managing multiple debuggers. These commands allow you to group
debuggers, run code on multiple processors, and send commands to a
group of debuggers.

� Changing modes. These commands (listed on page 12-4) allow you to
switch freely between the debugging modes (auto, mixed, and assembly).

� Managing windows. These commands (listed on page 12-4) allow you
to make a window active and move or resize the active window.

� Displaying and changing data. These commands (listed on page 12-5)
allow you to display and evaluate a variety of data items.

� Performing system tasks. These commands (listed on page 12-6) al-
low you to perform several system functions and provide you with some
control over the target system.

� Managing breakpoints. These commands (listed on page 12-7)
provide you with a command line method for controlling software
breakpoints.

� Displaying files and loading programs. These commands (listed on
page 12-4) allow you to change the displays in the File and Disassembly
windows and to load object files into memory.

� Customizing the screen. These commands (listed on page 12-4) allow
you to customize the debugger display, then save and later reuse the
customized displays.

� Memory mapping. These commands (listed on page 12-7) allow you to
define the areas of target memory that the debugger can access.

� Running programs. These commands (listed on page 12-8) provide
you with a variety of methods for running your programs in the debugger
environment.

� Profiling commands. These commands (listed on page 12-9) allow you
to collect execution statistics for your code.

� Memory system analysis commands (simulator only). These com-
mands (listed on page 12-10) allow you to set up analysis for events sup-
ported by the simulator core.

Functional Summary of Debugger Commands

12-3Summary of Commands

Managing multiple debuggers

To do this...
Use this
command...

See
page...

Use the command history ! 12-12

Assign a variable to the result of an expression @ 12-13

Define a custom command string alias 12-14

Record the information shown in the PDM display
area

dlog 12-20

Display a string to the PDM display area echo 12-21

Evaluate an expression in a debugger or group of
debuggers and set a variable to the result

eval 12-22

List available PDM commands help 12-25

View the description of a PDM command help 12-25

List the last twenty commands history 12-26

Conditionally execute PDM commands if/elif/else/endif 12-26

Loop through PDM commands loop/break/con-
tinue/endloop

12-28

Pause the PDM pause 12-36

Halt code execution pesc 12-36

Global halt phalt 12-37

Run code globally prun 12-40

Run free globally prunf 12-41

Single-step globally pstep 12-41

Exit any debugger and/or the PDM quit 12-42

Send a command to an individual processor or a
group of processors

send 12-46

Change the PDM prompt set 12-47

Create your own system variables set 12-47

Define or modify a group of processors set 12-47

List all system variables or groups of processors set 12-47

Set the default group set 12-47

Invoke an individual debugger spawn 12-51

Find the execution status of a processor or a group
of processors

stat 12-53

Enter an operating-system command system 12-54

Execute a batch file take 12-55

Delete an alias definition unalias 12-56

Delete a group or system variable unset 12-56

Functional Summary of Debugger Commands

 12-4

Changing modes

To put the debugger in...
Use this
command...

See
page...

Assembly mode asm 12-14

Auto mode for debugging C code c 12-16

Mixed mode mix 12-33

Managing windows

To do this...
Use this
command...

See
page...

Reposition a window move 12-34

Resize a window size 12-50

Make a window active win 12-60

Make a window as large as possible zoom 12-61

Customizing the screen

To do this...
Use this
command...

See
page...

Change the command-line prompt prompt 12-40

Load and use a previously saved custom screen
configuration

sconfig 12-46

Save a custom screen configuration ssave 12-52

Displaying files and loading programs

To do this...
Use this
command...

See
page...

Display a text file in a File window file 12-23

Load an object file and its symbol table load 12-28

Load only the object-code portion of an object file reload 12-42

Load only the symbol-table portion of an object file sload 12-50

Functional Summary of Debugger Commands

12-5Summary of Commands

Displaying and changing data

To do this...
Use this
command...

See
page...

Evaluate and display the result of a C expression ? 12-11

Display C and/or assembly language code at a
specific point

addr 12-13

Display the Calls window calls 12-16

Display assembly language code at a specific
address

dasm 12-19

Display the values in an array or structure, or
display the value that a pointer is pointing to

disp 12-19

Evaluate a C expression without displaying the
results

eval 12-22

Display a specific line in the File window line 12-28

Display a specific C function func 12-24

Change the range of memory displayed in the
Memory window or display an additional Memory
window

mem 12-32

Change the format for displaying data values setf 12-49

Display the current debugger version version 12-58

Continuously display the value of a variable,
register, or memory location within the Watch
window

wa 12-58

Delete a data item from the Watch window wd 12-59

Show the type of a data item whatis 12-60

Delete all data items from the Watch window wr 12-61

Functional Summary of Debugger Commands

 12-6

Performing system tasks

To do this...
Use this
command...

See
page...

Define your own command string alias 12-14

Change the current working directory from within
the debugger environment

cd, chdir 12-17

Clear all displayed information from the display
area of the Command window

cls 12-17

List the contents of the current directory or any
other directory

dir 12-19

Record the information shown in the display area of
the Command window

dlog 12-20

Display a string to the Command window while
executing a batch file

echo 12-21

Display a help topic for a debugger command help 12-25

Conditionally execute debugger commands in a
batch file

if/else/endif 12-27

Loop debugger commands in a batch file loop/endloop 12-29

Pause the execution of a batch file pause 12-36

Exit the debugger quit 12-42

Reset communication with the emulator reconnect 12-42

Reset the target system reset 12-43

Associate a beeping sound with the display of error
messages

sound 12-51

Enter any operating-system command or exit to a
system shell

system 12-54

Execute commands from a batch file take 12-55

Delete an alias definition unalias 12-56

Name additional directories that can be searched
when you load source files

use 12-57

Functional Summary of Debugger Commands

12-7Summary of Commands

Managing breakpoints

To do this...
Use this
command...

See
page...

Add a software breakpoint ba 12-15

Delete a software breakpoint bd 12-15

Display a list of all the software breakpoints that are
set

bl 12-15

Reset (delete) all software breakpoints br 12-16

Memory mapping

To do this...
Use this
command...

See
page...

Initialize a block of memory word by word fill 12-24

Initialize a block of memory byte by byte fillb 12-24

Add an address range to the memory map ma 12-30

Enable or disable memory mapping map 12-31

Connect a simulated I/O port to an input or output
file (simulator only)

mc 12-31

Delete an address range from the memory map md 12-32

Disconnect a simulated I/O port (simulator only) mi 12-33

Display a list of the current memory map settings ml 12-34

Reset the memory map (delete all range defini-
tions)

mr 12-34

Save a block of memory to a system file ms 12-35

Connect an input file to the pin (simulator only) pinc 12-37

Disconnect the input file from the pin (simulator
only)

pind 12-38

List the pins that are connected to the input files
(simulator only)

pinl 12-38

Functional Summary of Debugger Commands

 12-8

Running programs

To do this..
Use this
command...

See
page...

Single-step through assembly language or C code,
one C statement at a time; step over function calls

cnext 12-18

Single-step through assembly language or C code,
one C statement at a time

cstep 12-18

Run a program up to a certain point go 12-25

Halt the target system halt 12-25

Single-step through assembly language or C code;
step over function calls

next 12-35

Reset the target system reset 12-43

Reset the program to its entry point restart 12-43

Execute code in a function and return to the func-
tion’s caller

return 12-43

Run a program run 12-44

Run a program with benchmarking—count the
number of CPU clock cycles consumed by the ex-
ecuting portion of code

runb 12-45

Disconnect the emulator from the target system
and run free

runf 12-45

Single-step through assembly language or C code step 12-53

Execute commands from a batch file take 12-55

Functional Summary of Debugger Commands

12-9Summary of Commands

Profiling commands

All of the profiling commands can be entered from the Profile menu and
associated dialog boxes. In many cases, using the Profile menu and dialog
boxes is the easiest way to enter some of these commands. For this reason
and also because there are over 100 profiling commands, most of these
commands are not described individually in this chapter (as the basic
debugger commands are).

Listed below are some of the profiling commands that you might choose to
enter from the command line; these commands are also described in the
alphabetical command summary. The remaining profiling commands are
summarized in section 12.3, Summary of Profiling Commands, on
page 12-62.

To do this...
Use this
command...

See
page...

Run a full profiling session pf 12-36

Run a quick profiling session pq 12-38

Resume a profiling session pr 12-39

Switch to profiling environment profile 12-39

Add a stopping point sa 12-45

Delete a stopping point sd 12-46

List all the stopping points sl 12-50

Delete all the stopping points sr 12-52

Save all the profile data to a file vaa 12-57

Save currently displayed profile data to a file vac 12-57

Reset the display in the Profile window to show all
areas and the default set of data

vr 12-58

Functional Summary of Debugger Commands

 12-10

Memory system analysis commands (simulator only)

Most of the memory system analysis commands can be entered from the anal-
ysis menu and dialog box. However, you might want to create a batch file that
sets up your most frequently used analysis settings when the debugger is in-
voked.

Listed below are the memory system analysis commands that are available
for you to enter either on the command line or in a batch file.

To do this... Use this
command...

See
page...

Enable memory system analysis ee 9-10

Disable memory system analysis or a specified event ed 9-11

Configure an event as a break event eb 9-11

Configure an event as a count event ecs 9-11

Reset the counters for all events or for a specified event ecr 9-12

List the configuration for a specified event or all events
in the Command window

el 9-12

Disable all events and remove any event configurations
that are set

er 9-12

?

12-11 Summary of Commands

12.2 Alphabetical Summary of Debugger and PDM Commands

There are three types of debugger commands:

� Basic debugger commands

� Parallel Debug Manager (PDM) commands that allow you to control
multiple debuggers

� Profiler commands that allow you to control the debugger profiling
environment

Most of the commands can be used in the basic debugger environment and/or
the profiling environment. Other commands can be used only by the parallel
debug manager (PDM). Some commands can be used in more than one envi-
ronment; other commands can be used in only one of the environments. Each
command description identifies the applicable environments for the command.

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression [, display format]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the display area of the Command window. The expression can be
any C expression, including an expression with side effects; however, you
cannot use a string constant or function call in the expression.

If the result of expression is not an array or structure, then the debugger
displays the results in the Command window. If expression is a structure or
array, ? displays the entire contents of the structure or array; you can halt long
listings by pressing ESC .

!

12-12

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result is displayed in... Parameter Result is displayed in...

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Use the PDM Command History!

Syntax ! {prompt number | string}
!!

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PDM supports a command history that is similar to the UNIX command
history. The PDM prompt identifies the number of the current command. This
number is incremented with every command. The PDM command history
allows you to reenter any of the last twenty commands.

� The number parameter is the number of the PDM prompt that contains the
command that you want to reenter.

� The string parameter tells the PDM to execute the last command that
began with string.

� The !! command tells the PDM to execute the last command that you
entered.

addr

12-13 Summary of Commands

Substitute Result of an Expression@

Syntax @ variable name = expression

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description Unlike the SET command, the @ command first evaluates the expression, and
then sets the variable name to the result. The expression can be any
expression that uses the symbols described in section 11.7, Understanding
the PDM’s Expression Analysis, on page 11-17. The variable name can
consist of up to 128 alphanumeric characters or underscore characters.

Display Code at Specified Addressaddr

Syntax addr {address | function name}

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description Use the ADDR command to display C code or the disassembly at a specific
point. ADDR’s behavior changes depending on the current debugging mode:

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
Disassembly window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name as the first line of code in the File
window.

� In mixed mode, ADDR affects both the Disassembly and File windows by
displaying code starting at address or at function name as the first line of
code in the Disassembly and File window.

Note:

ADDR affects the File window only if the specified address is in a C function.

alias

12-14

Define Custom Command Stringalias

Syntax alias [alias name [, ” command string”]]

Menu selection Setup→Alias Commands

Toolbar selection none

Environments basic debugger PDM profiling

Description You can use the ALIAS command to associate one or more debugger or PDM
commands with a single alias name.

� The debugger version of the ALIAS command allows you to associate one
or more debugger commands with a single alias name.

� The PDM version of the ALIAS command allows you to associate one or
more PDM commands with a single alias name or associate one or more
debugger commands with a single alias name.

You can include as many commands in the command string as you like, as long
you separate them with semicolons and enclose the entire string of commands
in quotation marks. Also, you can identify command parameters by a percent
sign followed by a number (%1, %2, etc.). The total number of characters for
an individual command (expanded to include parameter values) is limited to
132. (This restriction applies to the debugger version of the ALIAS command
only.)

Previously defined alias names can be included as part of the definition for a
new alias.

You can find the current definition of an alias by entering the ALIAS command
with the alias name only. To see a list of all defined aliases, enter the ALIAS
command with no parameters.

Enter Assembly Modeasm

Syntax asm

Menu selection Mode→Assembly

Toolbar selection none

Environments basic debugger PDM profiling

Description The ASM command changes from the current debugging mode to assembly
mode. If you are already in assembly mode, the ASM command has no effect.

bl

12-15 Summary of Commands

Add Software Breakpointba

Syntax ba address

Menu selection Setup→Breakpoints

Toolbar selection

Environments basic debugger PDM profiling

Description The BA command sets a software breakpoint at a specific address. The
address can be an absolute address, any C expression, the name of a C func-
tion, or the name of an assembly language label.

You can set breakpoints in program memory (RAM) only; the address param-
eter is treated as a program-memory address.

Delete Software Breakpointbd

Syntax bd address

Menu selection Setup→Breakpoints

Toolbar selection

Environments basic debugger PDM profiling

Description The BD command clears a software breakpoint at a specific address. The
address can be an absolute address, any C expression, the name of a C func-
tion, or the name of an assembly language label.

List Software Breakpointsbl

Syntax bl

Menu selection Setup→Breakpoints

Toolbar selection

Environments basic debugger PDM profiling

Description The BL command lists all the software breakpoints that are currently set in your
program. It displays a table of breakpoints in the display area of the Command
window. BL lists all the breakpoints that are set in the order in which you set
them.

br

12-16

Reset Software Breakpointbr

Syntax br

Menu selection Setup→Breakpoints

Toolbar selection

Environments basic debugger PDM profiling

Description The BR command clears all software breakpoints that are set.

Enter Auto Modec

Syntax c

Menu selection Mode→C (Auto)

Toolbar selection none

Environments basic debugger PDM profiling

Description The C command changes from the current debugging mode to auto mode. If
you are already in auto mode, the C command has no effect.

Opens Calls Windowcalls

Syntax calls

Menu selection View→Call Stack Window

Toolbar selection none

Environments basic debugger PDM profiling

Description The CALLS command displays the Calls window. The debugger displays this
window automatically when you are in auto/C or mixed mode. However, you
can close the Calls window; the CALLS command opens the window again.

cls

12-17 Summary of Commands

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you do not use a directory name, the CD command displays the name of the
current directory. You can also use the CD command to change the current
drive. For example,

cd c:
cd d:\csource
cd c:\asmsrc

Clear Screencls

Syntax cls

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The CLS command clears all displayed information from the display area of
the Command window.

cnext

12-18

Single-Step C, Next Statementcnext

Syntax cnext [expression]

Menu selection Target→Next C

Toolbar selection

Environments basic debugger PDM profiling

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each state-
ment. If you are using CNEXT to step through assembly language code, the
debugger does not update the display until it has executed all assembly
language statements associated with a single C statement. Unlike CSTEP,
CNEXT steps over function calls rather than stepping into them—you do not
see the single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can use a conditional expression for conditional single-step
execution. (Section 6.4, Running Code Conditionally, page 6-11, discusses
this in detail.)

Single-Step Ccstep

Syntax cstep [expression]

Menu selection Target→Step C

Toolbar selection

Environments basic debugger PDM profiling

Description The CSTEP single-steps through a program one C statement at a time,
updating the display after executing each statement. If you are using CSTEP
to step through assembly language code, the debugger does not update the
display until it has executed all assembly language statements associated with
a single C statement.

The expression parameter specifies the number of statements that you want
to single-step. You can use a conditional expression for conditional single-step
execution. (Section 6.4, Running Code Conditionally, page 6-11, discusses
this in detail.)

disp

12-19 Summary of Commands

Display Disassembly at Specific Addressdasm

Syntax dasm {address | function name}

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The DASM command displays code beginning at a specific point within the
Disassembly window.

List Directory Contentsdir

Syntax dir [directory name]

Menu selection none

Toolbar selection none

Description The DIR command displays a directory listing in the display area of the Com-
mand window. If you use the optional directory name parameter, the debugger
displays a list of the specified directory’s contents. If you do not use the param-
eter, the debugger lists the contents of the current directory.

Add Structure, Array, or Pointer to Watch Windowdisp

Syntax disp expression [, display format]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The DISP command opens a Watch window to display the contents of one of
the following:

� An array
� A structure
� Pointer expressions to a scalar type (of the form *pointer)

If the expression is not one of these types, then DISP acts like a ? command.

When the Watch window is open, you can display the data pointed to by a
pointer or display the members of the array or structure by clicking the box icon
next to watched item:

dlog

12-20

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result is displayed in... Parameter Result is displayed in...

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

You can use the display format parameter only when you are displaying a
scalar type, an array of scalar type, or an individual member of an aggregate
type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the Watch window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other
locations are offset from that location.

Record Display Areadlog

Syntax dlog filename [,{a | w}]
or
dlog close

Menu selection File→Log File

Toolbar selection none

Environments basic debugger PDM profiling

Description The DLOG command allows you to record the information displayed in the
Command window or in the PDM display area into a log file and to record all
commands that you enter from the command line, from the toolbar, from the
menus, or with function keys.

To begin a recording session or in the display area of the PDM, use:

elif

12-21 Summary of Commands

dlog filename

To end the recording session, enter:

dlog close

You can write over existing log files or append additional information to existing
files. The optional parameters of the DLOG command control how existing log
files are used:

� Appending to an existing file. Use the a parameter to open an existing
file and append the information in the display area to the information al-
ready in the file.

� Writing over an existing file. Use the w parameter to open an existing
file and write over the current contents of the file. This is the default action
if you specify an existing filename without using either the a or w options;
you will lose the contents of an existing file if you do not use the append
(a) option.

Echo String to Display Area Batch File Onlyecho

Syntax echo string

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The ECHO command displays string in the display area of the Command win-
dow or in the display area of the PDM. You cannot use quote marks around
the string, and any leading blanks in your command string are removed when
the ECHO command is executed.

� You can execute the debugger version of the ECHO command only in a
batch file.

� You can execute the PDM version of the ECHO command in a batch file
or from the command line.

Test for Alternate Condition Batch File Onlyelif

Description ELIF provides an alternative test by which you can execute PDM commands
in the IF/ELIF/ELSE/ENDIF command sequence. See page 12-26 for more
information about these commands.

else

12-22

Execute Alternative Commands Batch File Onlyelse

Description ELSE provides an alternative list of or PDM commands in the IF/ELSE/ENDIF
or IF/ELIF/ELSE/ENDIF command sequences, respectively. See pages 12-26
and 12-27 for more information about these commands.

Terminate Conditional Sequence Batch File Onlyendif

Description ENDIF identifies the end of a conditional-execution command sequence
begun with an IF command. See pages 12-26 and 12-27 for more information
about these commands.

Terminate Looping Sequence Batch File Onlyendloop

Description ENDLOOP identifies the end of the LOOP/ENDLOOP command sequence.
See pages 12-28 and 12-29 for more information about the LOOP/ENDLOOP
commands.

Evaluate Expressioneval

Syntax eval expression
e expression

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The EVAL command evaluates an expression like the ? command does but
does not show the result in the display area of the Command window. EVAL
is useful for assigning values to registers or memory locations in a batch file
(where it is not necessary to display the result).

Evaluate Expression and Set to Variable PDM Environmenteval

Syntax eval [–g {group | processor name}] variable name=expression[, format]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The EVAL command evaluates an expression in a debugger and sets a vari-
able to the result of the expression.

file

12-23 Summary of Commands

� The –g option specifies the group or processor that EVAL should be sent
to. If you don’t use this option, the command is sent to the default group
(dgroup).

� When you send the EVAL command to more than one processor, the PDM
takes the variable name that you supply and appends a suffix for each
processor. The suffix consists of the underscore character (_) followed by
the name that you assigned the processor.

� The expression can be any expression that uses the symbols described
in section 11.7, Understanding the PDM’s Expression Analysis, on page
11-17.

� When you use the optional format parameter, the value that the variable
is set to will be in one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Display Text Filefile

Syntax file filename

Menu selection File→Open

Toolbar selection

Environments basic debugger PDM profiling

Description The FILE command displays the contents of any text file in the File window.
This command is intended primarily for displaying C source code. You can
view as multiple text files at the same time using multiple File windows.

fill

12-24

Fill Memory Word by Wordfill

Syntax fill address, length, data

Menu selection Memory→Fill Word

Toolbar selection none

Environments basic debugger PDM profiling

Environments basic debugger PDM profiling

Description The FILL command fills a block of memory word by word with a specified value.

� The address parameter identifies the first address in the block.
� The length parameter defines the number of words to fill.
� The data parameter is the value that is placed in each word in the block.

Fill Memory Byte by Bytefillb

Syntax fillb address, length, data

Menu selection Memory→Fill Byte

Toolbar selection none

Environments basic debugger PDM profiling

Description The FILLB command fills a block of memory byte by byte with a specified
value.

� The address parameter identifies the first address in the block.
� The length parameter defines the number of bytes to fill.
� The data parameter is the value that is placed in each byte in the block.

Display Functionfunc

Syntax func {function name | address}

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The FUNC command displays a specified C function in the File window. You
can identify the function by its name or by an address in the function. FUNC
works the same way FILE works, but with FUNC you do not need to identify
the name of the file that contains the function.

help

12-25 Summary of Commands

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The GO command executes code up to a specific point in your program. If you
do not supply an address, then GO acts like a RUN command without an
expression parameter.

Halt Target Systemhalt

Syntax halt

Menu selection Target→Halt!

Toolbar selection

Environments basic debugger PDM profiling

Description The HALT command halts your program, if you are using a simulator, or halts
the target system after you have entered a RUNF command, if you are using
an emulator. When you invoke the debugger, it automatically executes a HALT
command. If you enter a RUNF, quit the debugger, and later reinvoke the
debugger, you will effectively reconnect the emulator to the target system and
run the debugger in its normal mode of operation.

Display Help Topic for Debugger Commandhelp

Syntax help [debugger command]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The HELP command opens a help topic that describes the debugger
command. If you omit the debugger command, the debugger displays a list of
help topics.

help

12-26

List PDM Commands PDM Environmenthelp

Syntax help [command]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The HELP command provides a brief description of the requested PDM
command. If you omit the command parameter, the PDM lists all of the avail-
able PDM commands.

List the Last 20 PDM Commandshistory

Syntax history

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The HISTORY command displays the last 20 PDM commands that you have
entered.

Conditionally Execute PDM Commandsif/elif/else/endif

Syntax if expression
PDM commands
[elif expression
PDM commands]
[else
PDM commands]
endif

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description These commands allow you to execute PDM commands conditionally in a
batch file or from the command line.

if/else/endif

12-27 Summary of Commands

� If the expression for the IF is nonzero, the PDM executes all commands
between the IF and ELIF, ELSE, or ENDIF.

� The ELIF is optional. If the expression for the ELIF is nonzero, the PDM
executes all commands between the ELIF and ELSE or ENDIF.

� The ELSE is optional. If the expressions for the IF and ELIF (if present) are
false (zero), the PDM executes the commands between the ELSE and
ENDIF.

The IF/ELIF/ELSE/ENDIF can be entered interactively or included in a batch
file that is executed by the TAKE command. When you enter IF from the PDM
command line, a question mark (?) prompts you for the next entry. The PDM
continues to prompt you for input using the ? until you enter ENDIF. After you
enter ENDIF, the PDM immediately executes the IF command.

If you are in the middle of interactively entering an IF statement and want to
abort it, type CONTROL C .

Conditionally Execute Debugger Commands Batch File Onlyif/else/endif

Syntax if expression
debugger commands
[else
debugger commands]
endif

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description These commands allow you to execute debugger commands conditionally in
a batch file. If the expression if nonzero, the debugger executes the com-
mands between the IF and the ELSE or ENDIF. The ELSE portion of the com-
mand sequence is optional.

You can substitute a keyword for the expression. Keywords evaluate to true
(1) or false (0). You can use the following keywords with the IF command:

� $$EMU$$ (tests for the emulator version of the debugger)
� $$SIM$$ (tests for the simulator version of the debugger)

The conditional commands work with the following provisions:

� You can use conditional commands only in a batch file.
� You must enter each debugger command on a separate line in the file.
� You cannot nest conditional commands within the same batch file.

line

12-28

Display the specified line number in the FILE windowline

Syntax line line number

Menu selection none

Environments basic debugger PDM profiling

Description Use the LINE command to view specific lines of code. The LINE command
displays the specified line number in the middle of the FILE window. When the
line number is already displayed in the FILE window, the LINE command does
not affect the display.

Load Executable Object Fileload

Syntax load object filename

Menu selection File→Load Program

Toolbar selection none

Environments basic debugger PDM profiling

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. If you do not supply an extension, the debugger looks for
filename.out. The LOAD command clears the old symbol table and closes any
Watch windows.

Loop Through PDM Commands Batch File Onlyloop/break/
continue/endloop

Syntax loop Boolean expression
PDM commands
[break]
[continue]
endloop

Menu selection none

Environments basic debugger PDM profiling

Description The LOOP/BREAK/CONTINUE/ENDLOOP commands allow you to set up a
looping situation in a batch file or from the command line. Unlike the debugger

loop/endloop

12-29 Summary of Commands

version of the LOOP/ENDLOOP commands, the PDM version of the LOOP
command evaluates only Boolean expressions:

� If the Boolean expression evaluates to true (1), the PDM executes all
commands between the LOOP and BREAK, CONTINUE, or ENDLOOP.

� If the Boolean expression evaluates to false (0), the loop is not entered.

The optional BREAK command allows you to exit the loop without having to
reach the ENDLOOP. This is helpful when you are testing a group of proces-
sors and want to exit if an error is detected.

The CONTINUE command, which is also optional, acts as a goto and returns
command flow to the enclosing LOOP command. CONTINUE is useful when
the part of the loop that follows is complicated; returning to the top of the loop
avoids further nesting.

The LOOP/BREAK/CONTINUE/ENDLOOP commands can be entered inter-
actively or included in a batch file that is executed by the TAKE command.
When you enter LOOP from the PDM command line, a question mark (?)
prompts you for the next entry. The PDM continues to prompt you for input
using the ? until you enter ENDLOOP. After you enter ENDLOOP, the PDM
immediately executes the LOOP command.

If you are in the middle of interactively entering an LOOP statement and want
to abort it, type CONTROL C .

Loop Through Debugger Commands Batch File Onlyloop/endloop

Syntax loop expression
debugger commands
endloop

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The LOOP/ENDLOOP commands allow you to set up a looping situation in a
batch file. These looping commands evaluate in the same method as in the run
conditional command expression:

� If you use an expression that is not Boolean, the debugger evaluates the
expression as a loop count.

� If you use a Boolean expression, the debugger executes the command
repeatedly as long as the expression is true.

ma

12-30

The LOOP/ENDLOOP commands work under the following conditions:

� You can use LOOP/ENDLOOP commands only in a batch file.
� You must enter each debugger command on a separate line in the file.
� You cannot nest LOOP/ENDLOOP commands within the same file.

Add Block to Memory Mapma

Syntax ma address, length, type

Menu selection Memory→Mapping

Toolbar selection none

Environments basic debugger PDM profiling

Description The MA command identifies valid ranges of target memory. A new memory
range must not overlap an existing entry; if you define a range that overlaps
an existing range, the debugger ignores the new range.

� The address parameter defines the starting address of a range in memory.
This parameter can be an absolute address, any C expression, the name
of a C function, or an assembly language label.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory . . .
Use this keyword as the type
parameter . . .

Read-only memory R or ROM

Write-only memory W or WOM

Read/write memory R|W or RAM

Read-only program memory PROM

Read/write program memory PRAM

No-access memory PROTECT

Input port INPORT or P|R

Output port OUTPORT or P|W

Input/output port IOPORT or P|R|W

You can use the INPORT, OUTPORT, and IOPORT type parameters in
conjunction with the MC command to simulate I/O ports.

mc

12-31 Summary of Commands

Enable/Disable Memory Mappingmap

Syntax map {on | off }

Menu selection Memory→Mapping

Toolbar selection none

Environments basic debugger PDM profiling

Description The MAP command enables or disables memory mapping. Disabling memory
mapping can cause bus fault problems in the target because the debugger
may attempt to access nonexistent memory.

When you disable memory mapping with the simulator, you can still access
memory locations. However, the debugger does not prevent you from acces-
sing memory locations that you have not defined as valid in the memory map.

Connect Simulated I/O Port to a File Simulator Onlymc

Syntax mc port address, length, filename

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The MC command connects to an input or output file. Before you can connect
the port, you must add it to the memory map with the MA command.

� The port address parameter defines the address. This parameter can be
an absolute address, any C expression, the name of a C function, or an
assembly language label. The address must be the starting address of a
block.

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The filename parameter can be any filename. If you connect a port to read
from a file, the file must exist or the MC command will fail.

md

12-32

Delete Block From Memory Mapmd

Syntax md address

Menu selection Memory→Mapping

Toolbar selection none

Environments basic debugger PDM profiling

Description The MD command deletes a range of memory from the debugger’s memory
map.

The address parameter identifies the starting address of the range of memory.
If you supply an address that is not the starting address of a range, the
debugger displays this error message in the display area of the Command
window:

Specified map not found

Note:

If you want to use the MD command to remove a simulated I/O port, you must
first disconnect the port with the MI command.

Modify Memory Window Displaymem

Syntax mem expression [, [display format] [, window name]]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The MEM command identifies a new starting address for the block of memory
displayed in the Memory window. The optional window name parameter opens
an additional Memory window, allowing you to view a separate block of
memory. The debugger displays the contents of memory at expression in the
first data position in the Memory window. The end of the range is defined by
the size of the window. The expression can be an absolute address, a symbolic
address, or any C expression.

mix

12-33 Summary of Commands

When you use the optional display format parameter, memory is displayed in
one of the following formats:

Parameter Result is displayed in... Parameter Result is displayed in...

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal u Unsigned decimal

e Exponential floating point x Hexadecimal

f Decimal floating point

Disconnect I/O Port Simulator Onlymi

Syntax mi port address

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The MI command disconnects a simulated I/O port from its associated system
file.

The port address parameter identifies the address of the I/O port, which must
be defined previously with the MC command.

Enter Mixed Modemix

Syntax mix

Menu selection Mode→Mixed

Toolbar selection none

Environments basic debugger PDM profiling

Description The MIX command changes from the current debugging mode to mixed mode.
If you are already in mixed mode, the MIX command has no effect.

ml

12-34

List Memory Mapml

Syntax ml

Menu selection Memory→Mapping

Toolbar selection none

Environments basic debugger PDM profiling

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

Move a Windowmove

Syntax move window name [, [X position] [, [Y position] [, [width] [, length]]]]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The MOVE command moves the upper left corner of the window to the speci-
fied XY position, repositioning the rest of the window relative to that corner. If
you choose, you can resize the window while you move it (see the SIZE
command for valid width and length values). Specify the X position, Y position,
width, and length parameters in pixels. If you omit these parameters, the
MOVE command defaults to the window’s current position and size.

You can spell out the entire window name, but you need to specify only enough
letters to identify the window.

Reset Memory Mapmr

Syntax mr

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

next

12-35 Summary of Commands

Save Memory Block to Filems

Syntax ms address, length, filename

Menu selection Memory→Save

Toolbar selection none

Environments basic debugger PDM profiling

Description The MS command saves the values in a block of memory to a system file; files
are saved in COFF format.

� The address parameter identifies the first address in the block.

� The length parameter defines the length, in words, of the block. This
parameter can be any C expression.

� The filename is a system file. If you do not supply an extension, the
debugger adds a .obj extension.

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Target→Next

Toolbar selection

Environments basic debugger PDM profiling

Description The NEXT command is similar to the STEP command. If you are in C code,
the debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you do not see the
single-step execution of the function call.

The optional expression parameter specifies the number of statements that
you want to single-step. You can use a conditional expression for conditional
single-step execution. (Section 6.4, Running Code Conditionally, page 6-11,
discusses this in detail.)

pause

12-36

Pause Execution Batch File Onlypause

Syntax pause

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PAUSE command allows you to pause the debugger or PDM while
running a batch file or executing a flow control command. Pausing is especially
helpful in debugging the commands in a batch file.

When the debugger or PDM reads this command in a batch file or during a flow
control command segment, the debugger/PDM stops execution and displays
a dialog box. To continue processing, click OK or press .

Send ESC Key to Debuggerspesc

Syntax pesc [–g {group | processor name}]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PESC command sends the ESC key to an individual debugger or to a
group of debuggers. PESC halts program execution, but all processors in a
group do not halt at the same real time; individual processors halt in the order
in which they were added to the group.

The –g option identifies the group or processor that the command should be
sent to. If you do not use this option, the ESC key is sent to the default group
(dgroup).

Profile, Fullpf

Syntax pf starting point [, update rate]

Menu selection Profile→Run

Toolbar selection

Environments basic debugger PDM profiling

Description The PF command initiates a RUN and collects a full set of statistics on the
defined areas between the starting point and the first stopping point encoun-

pinc

12-37 Summary of Commands

tered. The starting point parameter can be a label, a function name, or a
memory address.

The optional update rate parameter determines how often the Profile window
is updated. The update rate parameter can have one of these values:

Value Description

0 This is the default. Statistics are not updated until the session is
halted (although you can force an update by clicking the mouse in
the window).

� 1 Statistics are updated during the session. A value of 1 means that
data is updated as often as possible.

Halt Processors in Parallelphalt

Syntax phalt [{–g group | processor name}]

Menu selection none

Environments basic debugger PDM profiling

Description The PHALT command halts one or more processors. If you send a PRUN or
PRUNF command to a group or to an individual processor, you can use PHALT
to halt the group or the individual processor. Each processor in a group is
halted at the same real time. If you do not use the –g option to specify a group
or a processor name, the PHALT command is sent to the default group
(dgroup).

Connect Pinpinc

Syntax pinc pinname, filename

Menu selection none

Environments basic debugger PDM profiling

Description The PINC command connects an input file to interrupt pin.

� The pinname parameter identifies the interrupt pin and must be one of the
external interrupt pins (pins 4–7).

� The filename parameter is the name of your input file.

pind

12-38

Disconnect Pinpind

Syntax pind pinname

Menu selection none

Environments basic debugger PDM profiling

Description The PIND command disconnects an input file from an interrupt pin. The
pinname parameter identifies the interrupt pin and must be one of the external
interrupt pins (pins 4–7).

List Pinpinl

Syntax pinl

Menu selection none

Environments basic debugger PDM profiling

Description The PINL command displays all of the pins—unconnected pins first, followed
by the connected pins. For a connected pin, the simulator displays the name
of the pin and the absolute pathname of the file in the Command window.

Profile, Quickpq

Syntax pq starting point [, update rate]

Menu selection Profile→Run

Toolbar selection

Environments basic debugger PDM profiling

Description The PQ command initiates a RUN command and collects a subset of the avail-
able statistics on the defined areas between the starting point and the first
stopping point encountered. PQ is similar to PF, except that PQ does not
collect exclusive or exclusive max data.

The update rate parameter is the same as for the PF command.

profile

12-39 Summary of Commands

Resume Profiling Sessionpr

Syntax pr [clear data [, update rate]]

Menu selection Profile→Run

Toolbar selection

Environments basic debugger PDM profiling

Description The PR command resumes the last profiling session (initiated by PF or PQ),
starting from the current program counter.

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

Value Description

0 This is the default. The profiler continues to collect data (adding the data
to the existing data for the profiled areas) and to use the previous internal
profile stacks.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Switch to Profiling Environmentprofile

Syntax profile

Menu selection Profile→Profile Mode

Toolbar selection none

Environments basic debugger PDM profiling

Description The PROFILE command toggles between the basic debugger and profiling
environments. If you enter PROFILE from the basic debugger environment,
the debugger switches to the profiling environment. If you enter PROFILE from
the profiling environment, the debugger switches to the basic debugger en-
vironment.

prompt

12-40

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (a semicolon or comma ends the string). The
new prompt cannot be longer than 132 characters.

Run Code in Parallelprun

Syntax prun [–r] [–g {group | processor name}]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PRUN command is the basic command for running an entire program. You
enter the command from the PDM command line to begin execution at the
same real time for an individual processor or a group of processors. The –g
option identifies the group or processor that the command should be sent to.
If you do not use this option, then code runs on the default group (dgroup). You
can use the PHALT command to stop a global run.

The –r (return) option for the PRUN command determines when control
returns to the PDM command line:

� Without –r , control is not returned to the command line until each
debugger in the group finishes running code. If you want to to break out
of a synchronous command and regain control of the PDM command line,
press CONTROL C in the PDM window. This returns control to the PDM
command line. However, no debugger executing the command is inter-
rupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. You can type new commands, but
the processors cannot execute the commands until they finish with the
current command; however, you can perform PHALT, PESC, and STAT
commands when the processors are still executing.

pstep

12-41 Summary of Commands

Run Free in Parallelprunf

Syntax prunf [–g {group | processor name}]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PRUNF command starts the processors running free, which means they
are disconnected from the emulator. RUNF synchronizes the debuggers to
cause the processors to begin execution at the same real time. The –g option
identifies the group or processor that the command should be sent to. If you
do not use this option, then code runs on the default group (dgroup).

The PHALT command stops a PRUNF; note that the debugger automatically
executes a PHALT when the debugger is invoked.

Single-Step in Parallelpstep

Syntax pstep [–g {group | processor name}] [count]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The PSTEP command single-steps synchronously through assembly
language code with interrupts disabled. RUNF synchronizes the debuggers to
cause the processors to begin execution at the same real time. The –g option
identifies the group or processor that the command should be sent to. If you
do not use this option, then code runs on the default group (dgroup). You can
use the PHALT command to stop a global run.

You can use the count parameter to specify the number of statements that you
want to single-step.

Note:

If the current statement that a processor is pointing to has a breakpoint, that
processor will not step synchronously with the other processors when you
use the PSTEP command. However, that processor will still single-step.

quit

12-42

Exit Debuggerquit

Syntax quit

Menu selection File→Exit

Toolbar selection none

Environments basic debugger PDM profiling

Description The QUIT command exits the debugger and returns to the operating system.
If you enter this command from the PDM, the PDM and all debuggers running
under the PDM are exited.

Reset Communication With Emulator Emulator Onlyreconnect

Syntax reconnect

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The RECONNECT command reinitializes communication between the
debugger and the emulator. This command can be used after an unrecover-
able fatal error.

Any software breakpoints set before a reconnect may still reside in memory
after the reconnect. However, the debugger does not recognize that the break-
points are set. You should reload memory in order to clear out any residual
breakpoints.

Reload Object Codereload

Syntax reload [object filename]

Menu selection File→Reload Program

Toolbar selection none

Environments basic debugger PDM profiling

Description The RELOAD command loads only an object file without loading its
associated symbol table. This is useful for reloading a program when target
memory has been corrupted. If you enter the RELOAD command without
specifying a filename, the debugger reloads the file that you loaded last.

return

12-43 Summary of Commands

Reset Target Systemreset

Syntax reset

Menu selection Target→Reset Target

Toolbar selection none

Environments basic debugger PDM profiling

Description The RESET command resets the target system (emulator only) or simulator.
This is a software reset.

If you are using the simulator and execute the RESET command, the simulator
simulates the processor and peripheral reset operation, putting the processor
in a known state.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection Target→Restart

Toolbar selection

Environments basic debugger PDM profiling

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a
program into memory.)

Return to Function’s Callerreturn

Syntax return
ret

Menu selection Target→Return

Toolbar selection

Environments basic debugger PDM profiling

run

12-44

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by doing one of the following actions:

� Click the Halt icon on the toolbar:

� From the Target menu, select Halt!.

� Press ESC .

Run Coderun

Syntax run [expression]

Menu selection Target→Run

Toolbar selection

Environments basic debugger PDM profiling

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you do not supply an expression, the program executes until it encoun-
ters a breakpoint or until you do one of the following actions:

� Click the Halt icon on the toolbar:

� From the Target menu, select Halt!.

� Press ESC .

� If you supply a logical or relational expression, the run becomes
conditional. (Section 6.4, Running Code Conditionally, page 6-11,
discusses this in detail.)

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

sa

12-45 Summary of Commands

Benchmark Coderunb

Syntax runb

Menu selection Target→Run Benchmark

Toolbar selection none

Environments basic debugger PDM profiling

Description The RUNB command executes a specific section of code and counts the
number of CPU clock cycles consumed by the execution. For RUNB to operate
correctly, execution must be halted by a software breakpoint. After RUNB
execution halts, the debugger stores the number of cycles into the CLK
pseudoregister. For a complete explanation of the RUNB command and the
benchmarking process, read section 6.5, Benchmarking, on page 6-12.

Run Free Emulator Onlyrunf

Syntax runf

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The RUNF command disconnects the emulator from the target system while
code is executing. When you enter RUNF, the debugger clears all breakpoints,
disconnects the emulator from the target system, and causes the processor
to begin execution at the current PC. You can quit the debugger, or you can
continue to enter commands. However, any command that causes the
debugger to access the target at this time produces an error.

The HALT command stops a RUNF; the debugger automatically executes a
HALT when the debugger is invoked.

Add Stopping Pointsa

Syntax sa address

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SA command adds a stopping point at address. The address can be a
label, a function name, or a memory address.

sconfig

12-46

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection File→Load Config

Toolbar selection none

Environments basic debugger PDM profiling

Description The SCONFIG command restores the display to a specified configuration.
This restores the window locations and sizes that were saved with the SSAVE
command into filename. The debugger searches for the specified file in the
current directory and then in directories named with the D_DIR environment
variable. If you do not supply a filename, the debugger looks for init.clr.

When you use SCONFIG to restore a configuration that includes multiple File,
Watch, or Memory windows, the additional windows are not opened automati-
cally. However, when you open an additional window and use a window name
that matches a window name that you used before you saved the configura-
tion, the window is placed in the saved location.

Delete Stopping Pointsd

Syntax sd address

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SD command deletes the stopping point at address.

Send Debugger Command to Individual Debuggerssend

Syntax send [–r] [–g {group | processor name}] debugger command

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SEND command sends any debugger command to an individual
processor or to a group of processors. If the command produces a message,
it is displayed in the COMMAND window for the appropriate debugger(s) and
also in the PDM window.

set

12-47 Summary of Commands

� The –g option specifies the group or processor that the debugger
command should be sent to. If you do not use this option, the command
is sent to the default group (dgroup).

� The –r (return) option determines when control returns to the PDM
command line:

� Without –r , control is not returned to the command line until each
debugger in the group finishes running code. Any results that are
printed in the COMMAND window of the individual debuggers is also
echoed in the PDM command window. These results are displayed by
processor.

If you want to break out of a synchronous command and regain control
of the PDM command line, press CONTROL C in the PDM window. This
returns control to the PDM command line. However, no debugger
executing the command is interrupted.

� With –r , control is returned to the command line immediately, even if a
debugger is still executing a command. When you use –r, you do not
see the results of the commands that the debuggers are executing.

Set a Variable to a Stringset

Syntax set [group name [= list of processor names]]
set [variable [= string value]]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SET command allows you to create groups of processors to which you can
send commands. With the SET command you can:

� Define a group of processors. It is useful to define a group when you
plan to send commands to the same set of processors. The commands
are sent to the processors in the same order in which you added the
processors to the group. To define a group, specify a group name and then
list the processors you want in the group.

� Set the default group. Defining a default group provides you with a short-
hand method of maintaining members in a group or of sending commands
to the same group. To set up the default group, use the SET command with
a special group name called dgroup.

set

12-48

� Modify an existing group or creating a group based on another
group. Once you have created a group, you can add processors to it by
using the SET command and preceding the existing group name with a
dollar sign ($) in the list of processors. You can also use a group as part
of another group by preceding the existing group’s name with a dollar sign.
The dollar sign tells the PDM to use the processors listed previously in the
group as part of the new list of processors.

� List all groups of processors. You can use the SET command without
any parameters to list all the processors that belong to a group, in the order
in which they were added to the group.

You can also use the SET command with system-defined variables to:

� Change the prompt for the PDM. To change the PDM prompt, use the
SET command with the system variable called prompt. For example, to
change the PDM prompt to 3PROCs, enter:

set prompt = 3PROCs

� Check the execution status of the processors. In addition to displaying
the execution status of a processor or group of processors, the STAT
command (described on page 12-53) sets a system variable called status.
If all of the processors in the specified group are running, the status vari-
able is set to 1. If one or more of the processors in the group is halted, the
status variable is set to 0.

You can use this variable when you want an instruction loop to execute
until a processor halts (the LOOP/ENDLOOP command is described on
page 12-29).

� Create your own system variables. You can use the SET command to
create your own system variables that you can use with PDM commands.
For more information about creating your own system variables, see
page 11-18.

setf

12-49 Summary of Commands

Set Default Data-Display Formatsetf

Syntax setf [data type, display format]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

� The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

� The display format parameter can be any of the following characters:

Parameter Result is displayed in... Parameter Result is displayed in...

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Valid Display Formats Valid Display Formats

Data
Type c d o x e f p s u

Data
Type c d o x e f p s u

char (c) √ √ √ √ √ long (d) √ √ √ √ √

uchar (d) √ √ √ √ √ ulong (d) √ √ √ √ √

short (d) √ √ √ √ √ float (e) √ √ √ √

int (d) √ √ √ √ √ double (e) √ √ √ √

uint (d) √ √ √ √ √ ptr (p) √ √ √ √

To return all data types to their default display format, enter:

setf *

size

12-50

Size a Windowsize

Syntax size window name [, [width] [, length]]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SIZE command changes the size of the window. Specify the width and
length parameters in pixels. If you omit these parameters, the SIZE command
defaults to the window’s current size.

You can spell out the entire window name, but you need to specify only enough
letters to identify the window.

List Stopping Pointsl

Syntax sl

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SL command lists all of the currently set stopping points.

Load Symbol Tablesload

Syntax sload object filename

Menu selection File→Load Symbols

Toolbar selection none

Environments basic debugger PDM profiling

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in an emulation environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). In such
an environment, loading the symbol table allows you to perform symbolic de-
bugging and examine the values of C variables.

SLOAD clears the existing symbol table before loading the new one but does
not modify memory or set the program entry point. SLOAD closes any Watch
windows.

spawn

12-51 Summary of Commands

Enable Error Beepingsound

Syntax sound {on | off }

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description You can cause a beep to sound every time a debugger error message is
displayed. This is useful if the Command window is hidden (because you
would not see the error message). By default, sound is off.

Invoke the ’C6x Debuggerspawn

Syntax spawn emu6x –n processor name [invocation options]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description You must invoke a debugger for each processor that you want the PDM to
control. To invoke a debugger, use the SPAWN command.

� emu6x is the executable that invokes the debugger.

The PDM associates the processor name with the actual processor
according to which executable you use. To invoke a debugger, the PDM
must be able to find the executable file for that debugger. The PDM first
searches the current directory and then searches the directories listed
with the PATH statement.

� –n processor name supplies a processor name. You must use the –n
option since the PDM uses processor names to identify the various debug-
gers that are running. The processor name can consist of up to eight
alphanumeric or underscore characters and must begin with an alphabetic
character. The name is not case sensitive. The processor name must
match one of the names defined in your board configuration file (see
Appendix B, Describing Your Target System to the Debugger).

sr

12-52

Reset Stopping Pointsr

Syntax sr

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The SR command resets (deletes) all currently set stopping points.

Save Screen Configurationssave

Syntax ssave [filename]

Menu selection File→Save As Config

Toolbar selection none

Environments basic debugger PDM profiling

Description The SSAVE command saves the current screen configuration to a file. This
saves the window locations and window sizes for all debugging modes, includ-
ing the size and location for multiple File, Watch, and Memory windows.
However, the debugger does not save docking information about docked win-
dows. If you have one or more docked windows and you save and reload the
screen configuration, the debugger does not display any windows as docked.
If you want the windows docked, you must follow the docking procedure again.

The filename parameter names the screen configuration file. You can include
path information (including relative pathnames); if you do not supply path
information, the debugger places the file in the current directory. If you do not
supply a filename, the debugger saves the current configuration into a file
named init.clr and places the file in the current directory.

If you use a filename that already exists, the debugger overwrites the file with
the current configuration.

step

12-53 Summary of Commands

Find the Execution Status of Processorsstat

Syntax stat [{–g group | processor name}]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The STAT command tells you whether a processor is running or halted. If a
processor is halted when you execute this command, then the PDM also lists
the current PC value for that processor. If you do not use the –g option, the
PDM displays the status of the processors in the default group (dgroup).

Single-Stepstep

Syntax step [expression]

Menu selection Target→Step

Toolbar selection

Environments basic debugger PDM profiling

Description The STEP command single-steps through assembly language or C code. If
you are in C code, the debugger executes one C statement at a time. In
assembly or mixed mode, the debugger executes one assembly language
statement at a time.

If you are single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g option). When
function execution is complete, single-step execution returns to the caller. If
the function was not compiled with the –g option, the debugger executes the
function but does not show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can use a conditional expression for conditional single-step
execution. (Section 6.4, Running Code Conditionally, page 6-11, discusses
this in detail.)

system

12-54

Enter Operating-System Commandsystem

Syntax system [operating-system command [, flag]]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The debugger version of the SYSTEM command allows you to enter operat-
ing-system commands without explicitly exiting the debugger environment. If
you enter SYSTEM with no parameters, the debugger opens a system shell
and displays the operating-system prompt. At this point, you can enter any op-
erating-system command. When you finish, enter:

exit

If you prefer, you can supply the operating-system command as a parameter
to the SYSTEM command. If the result of the command is a message or other
display, the debugger blanks the top of the debugger display to show the infor-
mation. In this case, you can use the flag parameter to tell the debugger
whether or not it should hesitate after displaying the information. The flag can
be 0 or 1.

0 If you supply a value of 0 for flag, the debugger immediately returns to the
debugger environment after the last item of information is displayed.

1 If you supply a value of 1 for flag, the debugger does not return to the
debugger environment until you enter:

exit .

(This is the default.)

Enter Operating-System Command PDM Environmentsystem

Syntax system operating-system command

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

take_abort

12-55 Summary of Commands

Description The PDM version of the SYSTEM command allows you to enter a single oper-
ating-system command without explicitly exiting the PDM environment. You
cannot enter more than one operating-system command with the PDM version
of the SYSTEM command.

Execute Batch Filetake

Syntax Basic debugger: take batch filename [, suppress echo flag]
PDM: take batch filename

Menu selection File→Take

Toolbar selection none

Environments basic debugger PDM profiling

Description The TAKE command tells the debugger or the PDM to read and execute
commands from a batch file. The batch filename parameter identifies the file
that contains commands. If you do not supply a pathname as part of the file-
name, the debugger/PDM first looks in the current directory and then searches
directories named with the D_DIR environment variable.

The batch filename for the PDM version of this command must have a .pdm
extension, or the PDM will not be able to read the file. In addition, the batch
file that the PDM reads can contain only PDM commands.

By default, the debugger echoes the commands to the display area of the
Command window and updates the display as it reads the commands from the
batch file. To suppress the echoing and updating, enter a 0 as the suppress
echo flag parameter. If you omit the suppress echo flag parameter or enter a
nonzero value for that parameter, the debugger behaves in the default
manner.

Display Abort Prompttake_abort

Syntax take_abort {on | off }

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The TAKE_ABORT feature prompts you before continuing a take file when a
target error is detected. When the take abort feature is OFF, you do not get an
abort prompt. The default is OFF.

unalias

12-56

Delete Alias Definitionunalias

Syntax unalias {alias name | *}

Menu selection Setup→Alias Commands

Toolbar selection none

Environments basic debugger PDM profiling

Description The UNALIAS command deletes defined aliases.

� To delete a single alias , enter the UNALIAS command with an alias name.
For example, to delete an alias named NEWMAP, enter:

unalias NEWMAP

� To delete all aliases , enter an asterisk instead of an alias name:

unalias *

The * symbol does not work as a wildcard.

Delete Groupunset

Syntax unset group name
unset *

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The UNSET command deletes a group of processors. You can use this
command in conjunction with the SET command to remove a particular
processor from a group.

To delete all groups, enter an asterisk instead of a group name:

unset *

The * symbol does not work as a wildcard.

Note:

When you use UNSET * to delete all of your system variables and processor
groups, variables such as prompt, status, and dgroup are also deleted.

vac

12-57 Summary of Commands

Use Additional Directoryuse

Syntax use [directory name]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The USE command allows you to name an additional directory that the
debugger can search when looking for source files. You can specify only one
directory at a time.

If you enter the USE command without specifying a directory name, the
debugger lists in the display area of the Command window all of the current
directories.

Save All Profile Data to a Filevaa

Syntax vaa filename

Menu selection Profile→Save All

Toolbar selection none

Environments basic debugger PDM profiling

Description The VAA command saves all statistics collected during the current profiling
session. The data is stored in a system file.

Save Displayed Profile Data to a Filevac

Syntax vac filename

Menu selection Profile→Save View

Toolbar selection none

Environments basic debugger PDM profiling

Description The VAC command saves all statistics currently displayed in the Profile
window. (Statistics that are not displayed are not saved.) The data is stored
in a system file.

version

12-58

Display the Current Debugger Versionversion

Syntax version

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The VERSION command displays the debugger’s copyright date and version
number, as well as the device name.

Reset Profile Window Displayvr

Syntax vr

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The VR command resets the display in the Profile window so that all marked
areas are listed and statistics are displayed with default labels and in the
default sort order.

Add Item to Watch Windowwa

Syntax wa expression [,[label] [, [display format] [, window name]]]

Menu selection Setup→Watch Variable

Toolbar selection none

Environments basic debugger PDM profiling

Description The WA command displays the value of expression in a Watch window. If a
Watch window is not open, executing WA opens a Watch window. The expres-
sion parameter can be any C expression, including an expression that has side
effects.

wd

12-59 Summary of Commands

WA is most useful for watching an expression whose value changes over time;
constant expressions serve no useful function in the watch window. The label
parameter is optional. When used, it provides a label for the watched entry. If
you do not use a label, the debugger displays the expression in the label field.

When you use the optional display format parameter, data is displayed in one
of the following formats:

Parameter Result is displayed in... Parameter Result is displayed in...

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

If you want to use a display format parameter without a label parameter, be
sure to include an extra comma. For example:

wa PC,,o

You can open additional Watch windows by using the window name parame-
ter. When you open an additional Watch window, the debugger appends the
window name to the Watch window label. You can create as many Watch
windows as you need.

If you omit the window name parameter, the debugger displays the expression
in the default Watch window (labeled Watch).

Delete Item From Watch Windowwd

Syntax wd expression [, window name]

Menu selection Setup→Watch Variable

Toolbar selection none

Environments basic debugger PDM profiling

Description The WD command deletes a specific item from the Watch window. The WD
command’s expression parameter must correspond to one of the variable
names listed in the Watch window. The optional window name parameter
specifies a particular Watch window. If no window names is given, the expres-
sion is deleted from the default Watch window.

whatis

12-60

Find Data Typewhatis

Syntax whatis symbol

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The WHATIS command shows the data type of symbol in the display area of
the Command window. The symbol can be any variable (local, global, or
static), a function name, structure tag, typedef name, or enumeration constant.

Make a Window Activewin

Syntax win window name

Menu selection View menu options

Toolbar selection none

Environments basic debugger PDM profiling

Description The WIN command allows you to make a window active by name. You can
spell out the entire window name, but you really need to specify only enough
letters to identify the window.

If you supply an ambiguous name (such as C, which could stand for CPU or
Calls), the debugger selects the first window it finds whose name matches the
name you supplied. If the debugger does not find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

zoom

12-61 Summary of Commands

Close Watch Windowwr

Syntax wr [{* | window name}]

Menu selection Setup→Watch Variable

Toolbar selection none

Environments basic debugger PDM profiling

Description The WR command deletes all items from a Watch window and closes the
window.

� To close the default Watch window, enter:

wr

� To close one of the additional Watch windows, use this syntax:

wr window name

� To close all Watch windows, enter:

wr *

Zoom a Windowzoom

Syntax zoom [window name]

Menu selection none

Toolbar selection none

Environments basic debugger PDM profiling

Description The ZOOM command makes the window as large as possible. To unzoom a
window, enter the ZOOM command a second time; this returns the window to
its prezoom size and position.

You can spell out the entire window name, but you really need to specify only
enough letters to identify the window.

Summary of Profiling Commands

 12-62

12.3 Summary of Profiling Commands

The following tables summarize the profiling commands that are used for
marking, enabling, disabling, and unmarking areas and for changing the
display in the Profile window. These commands are easiest to use from the
Profile menu and associated dialog boxes, so they are not included in the
alphabetical command summary. The syntaxes for these commands are
provided here so that you can include them in batch files.

Table 12–1. Marking areas

To mark this area... In C only In disassembly only

Lines

� By line number, address

� All lines in a function

MCLE filename, line number

MCLF function

MALE address

MALF function

Ranges

� By line numbers MCRE filename, line number, line number MARE address, address

Functions

� By function name

� All functions in a module

� All functions everywhere

MCFE function

MCFM filename

MCFG

not applicable

Table 12–2. Disabling marked areas

To disable this area... In C only
In disassembly
only

In C and
disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

DCLE filename, line number

DCLF function

DCLM filename

DCLG

DALE address

DALF function

DALM filename

DALG

not applicable

DBLF function

DBLM filename

DBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

DCRE filename, line number

DCRF function

DCRM filename

DCRG

DARE address

DARF function

DARM filename

DARG

not applicable

DBRF function

DBRM filename

DBRG

Summary of Profiling Commands

12-63Summary of Commands

To disable this area... In C only
In disassembly
only

In C and
disassembly

Functions

� By function name

� All functions in a module

� All functions everywhere

DCFE function

DCFM filename

DCFG

not applicable not applicable

DBFM filename

DBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

DCAF function

DCAM filename

DCAG

DAAF function

DAAM filename

DAAG

DBAF function

DBAM filename

DBAG

Table 12–3. Enabling disabled areas

To enable this area... In C only
In disassembly
only

In C and
disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

ECLE filename, line number

ECLF function

ECLM filename

ECLG

EALE address

EALF function

EALM filename

EALG

not applicable

EBLF function

EBLM filename

EBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

ECRE filename, line number

ECRF function

ECRM filename

ECRG

EARE address

EARF function

EARM filename

EARG

not applicable

EBRF function

EBRM filename

EBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

ECFE function

ECFM filename

ECFG

not applicable not applicable

EBFM filename

EBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

ECAF function

ECAM filename

ECAG

EAAF function

EAAM filename

EAAG

EBAF function

EBAM filename

EBAG

Summary of Profiling Commands

 12-64

Table 12–4. Unmarking areas

To unmark this area... In C only
In disassembly
only

In C and
disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

UCLE filename, line number

UCLF function

UCLM filename

UCLG

UALE address

UALF function

UALM filename

UALG

not applicable

UBLF function

UBLM filename

UBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

UCRE filename, line number

UCRF function

UCRM filename

UCRG

UARE address

UARF function

UARM filename

UARG

not applicable

UBRF function

UBRM filename

UBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

UCFE function

UCFM filename

UCFG

not applicable not applicable

UBFM filename

UBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

UCAF function

UCAM filename

UCAG

UAAF function

UAAM filename

UAAG

UBAF function

UBAM filename

UBAG

Summary of Profiling Commands

12-65Summary of Commands

Table 12–5. Changing the profile window display

(a) Viewing specific areas

To view this area... In C only
In disassembly
only

In C and
disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

VFCLE filename, line number

VFCLF function

VFCLM filename

VFCLG

VFALE address

VFALF function

VFALM filename

VFALG

not applicable

VFBLF function

VFBLM filename

VFBLG

Ranges

� By line number, address

� All ranges in a function

� All ranges in a module

� All ranges everywhere

VFCRE filename, line number

VFCRF function

VFCRM filename

VFCRG

VFARE address

VFARF function

VFARM filename

VFARG

not applicable

VFBRF function

VFBRM filename

VFBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

VFCFE function

VFCFM filename

VFCFG

not applicable not applicable

VFBFM filename

VFBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

VFCAF function

VFCAM filename

VFCAG

VFAAF function

VFAAM filename

VFAAG

VFBAF function

VFBAM filename

VFBAG

(b) Viewing different data (c) Sorting the data

To view this information...
Use this
command... To sort on this data...

Use this
command...

Count VDC Count VSC

Inclusive VDI Inclusive VSI

Inclusive, maximum VDN Inclusive, maximum VSN

Exclusive VDE Exclusive VSE

Exclusive, maximum VDX Exclusive, maximum VSX

Address VDA Address VSA

All VDL Data VSD

13-1Basic Information About C Expressions

Basic Information
About C Expressions

Many of the debugger commands take C expressions as parameters. This
allows the debugger to have a relatively small, yet powerful, instruction set.
Because C expressions can have side effects—that is, the evaluation of some
types of expressions can affect existing values—you can use the same com-
mand to display or to change a value. This reduces the number of commands
in the command set.

This chapter contains basic information that helps you use C expressions as
debugger command parameters.

Topic Page

13.1 C Expressions for Assembly Language Programmers 13-2.

13.2 Using Expression Analysis in the Debugger 13-4.

Chapter 13

C Expressions for Assembly Language Programmers

 13-2

13.1 C Expressions for Assembly Language Programmers

It is not necessary for you to be an experienced C programmer to use the
debugger. However, to use the debugger’s full capabilities, you should be fa-
miliar with the rules governing C expressions. You should obtain a copy of The
C Programming Language (first or second edition) by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New Jersey.
This book is referred to in the C community, and in Texas Instruments docu-
mentation, as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started, here
is a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference

[] array reference * indirection (unary)

& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)

* multiplication / division

% modulo – negation (unary)

(type) type cast

� Relational and logical operators

> greater than >= greater than or equal to

< less than <= less than or equal to

== is equal to != is not equal to

&& logical AND || logical OR

! logical NOT (unary)

C Expressions for Assembly Language Programmers

13-3Basic Information About C Expressions

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, the parameters
they are used with have side effects.

� Bitwise operators

& bitwise AND | bitwise OR

^ bitwise exclusive-OR << left shift

>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition

–= assignment with subtrac-
tion

/= assignment with division

%= assignment with modulo &= assignment with bitwise
AND

^= assignment with bitwise
XOR

|= assignment with bitwise OR

<<= assignment with left shift >>= assignment with right shift

*= assignment with multiplica-
tion

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, the parameters they are used with
have side effects.

Using Expression Analysis in the Debugger

 13-4

13.2 Using Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, a few limitations, as well as a few additional features, are not
described in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis
features.

� The sizeof operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in expres-
sions.

� The debugger supports a limited capability of type casts; the following
forms are allowed:

(basic type)
(basic type * ...)
([structure/union/enum] structure/union/enum tag)
([structure/union/enum] structure/union/enum tag * ...)

You can use up to six * characters in a cast.

Additional features

� All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.) Floats are represented in IEEE floa-
ting-point format.

� All registers can be referenced by name. The ’C6x auxiliary registers are
treated as integers and/or pointers.

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

Using Expression Analysis in the Debugger

13-5Basic Information About C Expressions

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. If you
want to see local variables from the currently executing function, you need
not use this form; you can simply specify the variable name (just as in your
C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

In this expression form, filename does not include the file extension; the
debugger searches the object symbol table for any source filename that
matches the input name, disregarding any extension. Thus, if the variable
ABC is in file source.c, you can specify it as source.ABC.

These expression forms can be combined into an expression of the form:

filename.function name.variable name

� Any integral or void expression can be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*A5
*(A2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be type cast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory con-
tents as an array of floating-point values within the DISP window, begin-
ning with memory location 10 as array member [0].

Using Expression Analysis in the Debugger

 13-6

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and con-
verts the integer to a floating-point value.

You can also type cast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)–>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.

A-1

Appendix A

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs. If you are using PDM to run multiple de-
buggers, PDM executes the first step. (For more information on the environ-
ment variables mentioned below, see Chapter 2, Getting Started With the
Debugger.)

The debugger:

1) Reads options from the operating system’s command line.

2) Reads any information specified with the D_OPTIONS environment
variable.

3) Reads information from the D_DIR and D_SRC environment variables.

4) Looks for the init.clr screen-configuration file.

(The debugger searches for the screen-configuration file in directories
named with D_DIR.)

5) Initializes the debugger screen and windows.

6) Finds the batch file that defines your memory map by searching in directo-
ries named with D_DIR. The debugger expects this file to set up the
memory map and follows these steps to look for the batch file:

� When you invoke the debugger, it checks to see if you have used the –t
debugger option. If it finds the –t option, the debugger reads and
executes the specified file.

� If you have not used the –t option, the debugger looks for the default
initialization batch file. The batch file name differs for each version of
the debugger:

� For the emulator, this file is named emuinit.cmd.
� For the simulator, this file is named siminit.cmd.

Appendix A

Where the debugger looks for files

 A-2

If the debugger finds the file corresponding to your tool, it reads and
executes the file. If the debugger does not find the –t option or the initializa-
tion batch file, it looks for a file called init.cmd. This allows you to have one
initialization batch file for more than one debugger tool. To set up this file,
you can use the IF/ELSE/ENDIF commands (see page 3-8 for more in-
formation) to indicate which memory map applies to each tool.

7) Loads any object files specified with D_OPTIONS or specified on the com-
mand line during invocation.

8) Determines the initial mode (auto, assembly, or mixed) and displays the
appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

Where the debugger looks for files

You can perform all load-type commands by using menu options. However, if
you choose to use the command-line equivalents to these menu options, you
need to know where the debugger looks for source files.

The FILE, LOAD, RELOAD, SLOAD, SCONFIG, and TAKE commands expect
a filename as a parameter. If the filename includes path information, the
debugger uses the file from the specified directory and does not search for the
file in any other directory. If you do not supply path information, the debugger
must search for the file. The debugger first looks for the file in the current
directory. You may, however, have your files in several different directories.

� If you are using LOAD, RELOAD, or SLOAD, you have only two choices
for supplying the path information:

� Specify the path as part of the filename.

� Alternatively, you can use the CD command before you enter the
LOAD, RELOAD or SLOAD command to change the current directory
from within the debugger. The format for this command is:

cd directory name

� If you are using the FILE command, you have several options:

� Within the operating-system environment, you can name additional
directories with the D_SRC environment variable. The format for this
environment variable is:

SET D_SRC=pathname;pathname For PCs

setenv D_SRC ” pathname;pathname” For SPARCstations

You can name several directories for the debugger to search.

What the Debugger Does During Invocation / Where the Debugger Looks for Files

Where the debugger looks for files

A-3What the Debugger Does During Invocation

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this option is –i pathname.

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

� Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.

B-1Describing Your Target System to the Debugger

Appendix A

Describing Your Target System
to the Debugger

For the debugger to understand how you have configured your target system,
you must supply the target configuration information in a file for the debugger
to read.

� If you are using an emulation scan path that contains only one ’C6x and
no other devices, you can use the board.dat file that comes with the ’C6x
emulator kit. This file describes to the debugger the single ’C6x in the scan
path and gives the ’C6x the name CPU_A. Because the debugger auto-
matically looks for a file called board.dat in the current directory and in the
directories specified with the D_DIR environment variable, you can skip
this appendix.

� If you plan to use a target system that has multiple ’C6x devices or that
includes devices other than the ’C6x, you must follow these steps:

Step 1: Create the board configuration text file.

Step 2: Translate the board configuration text file to a binary, structured
format so that the debugger can read it.

Step 3: Specify the formatted configuration file when invoking the
debugger.

These steps are described in this appendix.

Topic Page

B.1 Step 1: Create the Board Configuration Text File B-2.

B.2 Step 2: Translate the Configuration File to a Debugger-Readable
Format B-5.

B.3 Step 3: Specify the Configuration File When Invoking
the Debugger B-6.

Appendix B

Step 1: Create the Board Configuration Text File

 B-2

B.1 Step 1: Create the Board Configuration Text File

To describe the emulation scan path of your target system to the debugger, you
must create a board configuration file. Each entry of the file describes one
device on your scan path and the entries follow the order of the devices in the
scan path. The text version of the configuration file is referred to as board.cfg
in this book.

Example B–1 shows a board.cfg file that describes a possible ’C6x device
chain. It lists six octals named A1–A6, followed by five ’C6x devices named
CPU_A, CPU_B, CPU_C, CPU_D, and CPU_E.

Example B–1. A Sample TMS320C6x Device Chain

(a) A sample board.cfg file

Device Name Device Type Comments

”A1” BYPASS08 ;the first device nearest TDO
;(test data out)

”A2” BYPASS08 ;the next device nearest TDO

”A3” BYPASS08

”A4” BYPASS08

”A5” BYPASS08

”A6” BYPASS08

”CPU_A” TMS320C6x ;the first ’C6x

”CPU_B” TMS320C6x

”CPU_C” TMS320C6x

”CPU_D” TMS320C6x

”CPU_E” TMS320C6x ;the last ’C6x nearest TDI
;(test data in)

(b) A sample ’C6x device chain

A6TDI CPU_ACPU_BCPU_CCPU_D A1A2 TDO. . .CPU_E

Step 1: Create the Board Configuration Text File

B-3Describing Your Target System to the Debugger

The order in which you list each device is important. The emulator scans the
devices, assuming that the data from one device is followed by the data of the
next device on the chain. Data from the device that is closest to the emulation
header’s TDO (test data out) reaches the emulator first. The device whose
data reaches the emulator first is listed first in the board.cfg file; the device
whose data reaches the emulator last is listed last in the board.cfg file.

The board.cfg file can have any number of each of these three types of entries:

� Debugger devices such as the ’C6x. These are the only devices that the
debugger can recognize.

� The TI ACT8997 scan path linker , or SPL. The SPL allows you to have
up to four secondary scan paths that can each contain debugger devices
(’C6xs) and other devices.

� Other devices . These are any other devices in the scan path. These de-
vices cannot be debugged and must be worked around or bypassed when
trying to access the ’C6xs.

Each entry in the board.cfg file consists of at least two pieces of data:

� The name of the device. The device name always appears first and is
enclosed in double quotes:

” device name”

This is the same name that you use with the –n debugger option, which
tells the debugger the name of the ’C6x. The device name can consist of
up to eight alphanumeric characters or underscore characters and must
begin with an alphabetic character.

� The type of the device. The debugger supports the following device
types:

� TMS320C6x is an example of a debugger-device type. TMS320C6x
describes the ’C6x.

� SPL specifies the scan path linker and must be followed by four sub-
paths, as in this syntax:

” device name” SPL {subpath0} {subpath1} {subpath2} {subpath3}

Each subpath can contain any number of devices. However, an SPL
subpath cannot contain another SPL. A subpath that contains no de-
vices must still be listed.

Step 1: Create the Board Configuration Text File

 B-4

Example B–2 shows a file that contains an SPL.

Example B–2. A board.cfg File Containing an SPL

Device Name Device Type Comments

”A1” BYPASS08 ;the first device nearest TDO

”A2” BYPASS08

”CPU_A” TMS320C6x ;the first ’C6x

”HUB” SPL ;the scan path linker

{ ;the first subpath

”B1” BYPASS08

”B2” BYPASS08

”CPU_B” TMS320C6x ;the second ’C6x

}

{ ;the second subpath

”C1” BYPASS08

”C2” BYPASS08

”CPU_C” TMS320C6x ;the third ’C6x

}

{ ;the third subpath (contains noth-
ing)

}

{ ;the fourth subpath

”D1” BYPASS08

”D2” BYPASS08

”CPU_D” TMS320C6x ;the fourth ’C6x

}

”CPU_E” TMS320C6x ;the last ’C6x nearest TDI

Note: The indentation in the file is for readability only.

Step 2: Translate the Configuration File to a Debugger-Readable Format

B-5Describing Your Target System to the Debugger

B.2 Step 2: Translate the Configuration File to a Debugger-Readable Format

After you have created the board.cfg file, you must translate it from text to a
binary, conditioned format so that the debugger can understand it. To translate
the file, use the composer utility that is included with the emulator kit. At the
system prompt, enter the following command:

composer [input file [output file]]

� The input file is the name of the board.cfg file that you created in step 1;
if the file is not in the current directory, you must supply the entire path-
name. If you omit the input filename, the composer utility looks for a file
called board.cfg in your current directory.

� The output file is the name that you can specify for the resulting binary file;
ideally, use the name board.dat. If you want the output file to reside in a
directory other than the current directory, you must supply the entire path-
name. If you omit an output filename, the composer utility creates a file
called board.dat and places it in the current directory.

To avoid confusion, use a .cfg extension for your text filenames and a .dat ex-
tension for your binary filenames. If you enter only one filename on the com-
mand line, the composer utility assumes that it is an input filename.

Step 3: Specify the Configuration File When Invoking the Debugger

 B-6

B.3 Step 3: Specify the Configuration File When Invoking the Debugger

When you invoke a debugger (either from the PDM or at the system prompt),
the debugger must be able to find the board.dat file so that it knows how you
have set up your scan path. The debugger looks for the board.dat file in the
current directory and in the directories named with the D_DIR environment
variable.

If you used a name other than board.dat or if the board.dat file is not in the cur-
rent directory or in a directory named with D_DIR, you must use the –f option
when you invoke the debugger. The –f option allows you to specify a board
configuration file (and pathname) to be used instead of board.dat. The format
for this option is:

–f filename

C-1Debugger Messages

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error mes-
sages that the debugger or PDM might display in the display area of the Com-
mand window or in the PDM display area. Each listing contains both a
description of the situation that causes the message and an action to take if
the message indicates a problem or error.

Topic Page

C.1 Associating Sound With Error Messages C-2.

C.2 Alphabetical Summary of Debugger Messages C-2.

C.3 Alphabetical Summary of PDM Messages C-22.

C.4 Additional Instructions for Expression Errors C-26.

C.5 Additional Instructions for Hardware Errors C-26.

Appendix C

Alphabetical Summary of Debugger Messages

 C-2

C.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of error messages. To do
this, use the SOUND command. The format for this command is:

sound {on | off }

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the Command window is hidden behind other windows.

If you are using the debugger with Windows 95 or Windows NT, you must be
sure that you have sound enabled in the control panel.

C.2 Alphabetical Summary of Debugger Messages

‘]’ expected

Description This is an expression error—it means that the parameter
contained an opening bracket symbol but did not contain a
closing bracket symbol.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening parenthesis symbol but did not contain
a closing parenthesis symbol.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

A

Aborted by user

Description The debugger halted a long Command display listing
because you pressed the ESC key.

Action None required; this is normal debugger behavior.

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

Alphabetical Summary of Debugger Messages

C-3Debugger Messages

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This is not neces-
sarily a breakpoint that you set—it may have been an internal
breakpoint that the debugger set for single-stepping).

Action None should be required; you may want to reset the program
entry point (Target→Restart) and reenter the single-step
command.

Breakpoint table full

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Open the Breakpoint Control dialog box by selecting
Breakpoints from the Setup menu. Delete individual software
breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You can invoke the debugger with the –v option so that fewer
symbols may be loaded, or you can relink your program and
link in fewer modules at a time.

Cannot allocate system memory

Description This is a fatal error—it means that the debugger is running out
of memory.

Action You can invoke the debugger with the –v option so that fewer
symbols may be loaded, or you can relink your program and
link in fewer modules at a time.

Alphabetical Summary of Debugger Messages

 C-4

Cannot connect file to program memory

Description An attempt has been made to connect a file to program
memory using the MC command.

Action You cannot connect a file to any location in program memory
using the MC command.

Cannot detect target power

Description This hardware error occurs after the emurst command is re-
set. Follow the steps described below and then restart your
emulator.

Action � Check the emulator board to be sure it is installed snugly.

� Check the cable connecting your emulator and target
system to be sure it is not loose.

� Check your target board to be sure it is getting the correct
voltage.

� Check your emulator scan path to be sure it is uninter-
rupted.

� Ensure that your port address is set correctly:

� Check to be sure the –p option used with the
D_OPTIONS environment variable matches the I/O
address defined by your switch settings. (See page
2-5 for more information on the D_OPTIONS envi-
ronment variable.)

� Check to see if you have a conflict in address space
with another bus setting. If you have a conflict,
change the switches on your board to one of the alter-
nate settings listed in the installation guide. Modify
the –p option of the D_OPTIONS environment vari-
able to reflect the change in your switch settings.

Cannot edit field

Description Expressions that are displayed in the Watch window cannot
be edited.

Action If you attempted to edit an expression in the Watch window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value is automatically updated.

Alphabetical Summary of Debugger Messages

C-5Debugger Messages

Cannot find/open initialization file

Description The debugger cannot find the init.cmd file.

Action Be sure that init.cmd is in the appropriate directory. If it is not,
copy it from the debugger product diskette. If the file is already
in the correct directory, verify that the D_DIR environment
variable is set up to identify the directory. See the information
about setting up the debugger environment information in-
cluded with your installation instructions.

Cannot halt the processor

Description This is a fatal error—for some reason, pressing ESC did not
halt program execution.

Action Exit the debugger. Invoke the autoexec.bat file, then invoke
the debugger again.

Cannot initialize target system

Description This error occurs while you are invoking the debugger with the
emulator. A variety of events may cause this error to occur.

Action � Check the cable connecting the emulator to the target
system to be sure it is not loose.

� Ensure that your port address is set correctly:

� Check to be sure the –p option used with the
D_OPTIONS environment variable matches the I/O
address defined by your switch settings.

� Check to see if you have a conflict in address space
with another bus setting. If you have a conflict,
change the switches on your board to one of the alter-
nate settings listed in the installation guide. Modify
the –p option of the D_OPTIONS environment vari-
able to reflect the change in your switch settings.

� Check the end of your autoexec.bat or initdb.bat file for
the emurst.exe command. Execute this command after
powering up the target board. See section 2.5 on
page 2-6.

For more information on setting up the D_OPTIONS environment vari-
able, see page 2-5 .

Alphabetical Summary of Debugger Messages

 C-6

Cannot map into reserved memory: ?

Description The debugger tried to access unconfigured/reserved/nonex-
istent memory.

Action Remap the reserved memory accesses.

Cannot map port address

Description You attempted to do a connect/disconnect on an illegal port
address.

Action Be sure that you are connecting to or disconnecting from an
address that is mapped in as an input, output, or I/O port.

Cannot open config file

Description The SCONFIG command cannot find the screen-customiza-
tion file that you specified. The debugger also displays this
message when you try to load a screen-customization file that
was saved by an older version of the debugger.

Action � Be sure that the filename was typed correctly. If it was not,
reenter the command with the correct name. If it was, re-
enter the command and specify full path information with
the filename.

� Be sure that the screen-customization file was saved us-
ing the current version of the debugger rather than an
older version of the debugger.

Cannot open “ filename”

Description The debugger attempted to show filename in the File window
but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open new window

Description A maximum of 127 windows can be open at once. The last
request to open a window would have made 128, which is not
possible.

Action Close any unnecessary windows. Windows that can be
closed include Watch, File, Calls, and Memory windows. To
close any of these windows, make the desired window active
and press CONTROL F4 .

Alphabetical Summary of Debugger Messages

C-7Debugger Messages

Cannot open object file: “ filename”

Description The file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load.

Action Be sure that you are loading an actual object file. Be sure that
the file was linked. You may want to run cl6x (with the –z op-
tion) or lnk6x again to create an executable object file.

Cannot read processor status

Description This is a fatal error—for some reason, pressing ESC did not
halt program execution.

Action Exit the debugger. Invoke the autoexec.bat file, then invoke
the debugger again. If you are using the emulator, check the
cable connections, also.

Cannot reset the processor

Description This is a fatal error—for some reason, pressing ESC did not
halt program execution.

Action Exit the debugger. Invoke the autoexec.bat file, then invoke
the debugger again. If you are using the emulator, check the
cable connections, also.

Cannot restart processor

Description The debugger attempted to reset the PC to the program entry
point, but the program does not seem to have an entry point.

Action Do not use Target→Restart or RESTART if your program
does not have an explicit entry point.

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system. This may also happen when you enable or dis-
able on-chip memory while using breakpoints.

Action Check your memory map. If the address that you wanted to
breakpoint was not in ROM, see section C.5, Additional
Instructions for Hardware Errors, page C-26.

Alphabetical Summary of Debugger Messages

 C-8

Cannot step

Description There is a problem with the target system.

Action See section C.5, Additional Instructions for Hardware Errors,
page C-26.

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Command “ command” not found

Description The debugger did not recognize the command that you typed.

Action Reenter the correct command. See Chapter 12, Sum-
mary of Commands.

Command timed out, emulator busy

Description There is a problem with the target system.

Action See section C.5, Additional Instructions for Hardware Errors,
page C-26.

Conflicting map range

Description A block of memory specified with the Memory→Mapping
menu option or the MA command overlaps an existing
memory map entry. Blocks cannot overlap.

Action Use Memory→Mapping or the ML command to list the exist-
ing memory map; this helps you find that existing block that
the new block would overlap. If the existing block is not neces-
sary, delete it with the Memory Map Control dialog box or with
the MD command. Use the Memory Map Control dialog box or
the MA command to redefine the block of memory. If the exist-
ing block is necessary, use the Memory Map Control dialog
box or the MA command to define a range that does not over-
lap the existing block.

Alphabetical Summary of Debugger Messages

C-9Debugger Messages

Corrupt call stack

Description The debugger tried to update the Calls window and could not.
This message is displayed in the following situations:

� A function was called that did not return.

� The program stack was overwritten in target memory.

� You are debugging code that has optimization enabled
(for example, you did not use the –g compile option); if
this is the case, ignore this message—code execution is
not affected.

Action If your program called a function that did not return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

E

Emulator I/O address is invalid

Description The debugger was invoked with the –p option, and an invalid
port address was used.

Action For valid port address values, see page 2-12.

EOF reached –connected at port: < memory addr>

Description The last data of the input file has been read.

Action You can disconnect the file with the MI command and connect
a new file with the MC command. If you do not do anything and
resume execution, then the input file automatically rewinds,
and input data is read from the beginning of the file.

Error in expression

Description This is an expression error.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Execution error

Description There is a problem with the target system.

Action See section C.5, Additional Instructions for Hardware Errors,
page C-26.

Alphabetical Summary of Debugger Messages

 C-10

F

File already tied to port

Description You attempted to connect to an address that already has a file
connected to it.

Action Connect the file to a mapped port that is not connected to a
file.

File already tied to this pin

Description You attempted to connect an input file to an interrupt pin that
already has a file connected to it.

Action Use the PINC command to connect the file to another inter-
rupt pin that is not connected to a file.

File does not exist

Description The port file could not be opened for reading.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Files must be disconnected from ports

Description You attempted to delete a memory map that has files con-
nected to it.

Action You must disconnect a port with the MI command before you
can delete it from the memory map.

File not found

Description The filename specified for the FILE command was not found
in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the FILE command and specify full path information with the
filename.

Alphabetical Summary of Debugger Messages

C-11Debugger Messages

File not found : “ filename”

Description The filename specified for the LOAD, RELOAD, SLOAD, or
TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it was, reenter
the command and specify full path information with the
filename.

File too large (filename)

Description You attempted to load a file that exceeded the maximum
loadable COFF file size.

Action Loading the file without the symbol table (SLOAD), or use cl6x
(with the –z option) or lnk6x to relink the program with fewer
modules.

Float not allowed

Description This is an expression error—a floating-point value was used
incorrectly.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Function required

Description The parameter for the FUNC command must be the name of a
function in the program that is loaded.

Action Reenter the FUNC command with a valid function name.

I

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that does not meet the C language rules for casts.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Alphabetical Summary of Debugger Messages

 C-12

Illegal left hand side of assignment

Description This is an expression error—the left-hand side of an assign-
ment expression does not meet C language assignment
rules.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Illegal memory access

Description Your program tried to access unmapped memory.

Action Modify your source code. Alternatively, you can check and
modify your memory map.

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that does not have an address.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Illegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Illegal structure reference

Description This is an expression error—either the item being referenced
as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Alphabetical Summary of Debugger Messages

C-13Debugger Messages

Illegal use of structures

Description This is an expression error—the expression parameter is not
using structures according to the C language rules.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Illegal use of void expression

Description This is an expression error—the expression parameter does
not meet the C language rules.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Integer not allowed

Description This is an expression error—the command does not accept
an integer as a parameter.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Invalid address
––– Memory access outside valid range: address

Description The debugger attempted to access memory at address,
which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument

Description One of the command parameters does not meet the require-
ments for the command.

Action Reenter the command with valid parameters. Refer to the
appropriate command description in Chapter 12, Sum-
mary of Commands.

Alphabetical Summary of Debugger Messages

 C-14

Invalid memory attribute

Description The third parameter of the MA command specifies the type, or
attribute, of the block of memory that is added to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Reenter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM (read-only memory)

R|W, RAM (read/write memory)
W, WOM (write-only memory)

PROM (read-only program memory)
PRAM (read/write program memory)
PROTECT (no-access memory)
OUTPORT, P|W (output port)

INPORT, P|R (input port)
IOPORT, P|R|W (input/output port)

Invalid object file

Description Either the file specified with File→Load Program, File→Re-
load Program, File→Load Symbols, the LOAD, the SLOAD,
or the RELOAD command is not an object file that the debug-
ger can load, or it has been corrupted.

Action Be sure that you are loading an actual object file. Be sure that
the file was linked. You may want to run cl6x (with the –z op-
tion) or lnk6x again to create an executable object file. If the
file you attempted to load was a valid executable object file,
then it was probably corrupted; recompile, assemble, and link
with cl6x.

Invalid watch delete

Description The debugger cannot delete the parameter supplied with the
WD command.

Action Reenter the WD command. Be sure to specify the symbol
name that matches the item you want to delete.

Alphabetical Summary of Debugger Messages

C-15Debugger Messages

Invalid window position

Description The debugger cannot move the window to the XY position
specified with the MOVE command. Either the XY parame-
ters are not within the screen limits, or the active window may
be too large to move to the desired position.

Action Reenter the MOVE command. Enter the X and Y parameters
in pixels.

Invalid window size

Description The width and length specified with the SIZE or MOVE com-
mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

Action Reenter the SIZE command. Enter the width and length in
pixels.

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see section C.5, Additional Instructions
for Hardware Errors, page C-26.

Lost processor clock

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see section C.5, Additional Instructions
for Hardware Errors, page C-26.

Alphabetical Summary of Debugger Messages

 C-16

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal left-hand side.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

M

Memory access error at address

Description Either the processor is receiving a bus fault, or there are
problems with target system memory.

Action See section C.5, Additional Instructions for Hardware Errors,
page C-26.

Memory map table full

Description Too many blocks have been added to the memory map. This
rarely happens unless blocks are added word by word (which
is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

More than 4 reads to register register at cycle cnum

Description Your program issued more than four reads of the same regis-
ter in the same cycle, which is illegal. However, conditional
registers are not included in this count. For more information
about register read constraints, see the TMS320C62x/C67x
CPU and Instruction Set Reference Guide.

Action Modify your source code.

Move path conflicts at cycle cycle

Description Your program issued two instructions that used the same
functional unit in the same execute packet. For more informa-
tion about functional units and resource constraints, see the
TMS320C62x/C67x CPU and Instruction Set Reference
Guide.

Action Modify your source code.

Alphabetical Summary of Debugger Messages

C-17Debugger Messages

Multiple writes to register register at cycle cnum

Description Your program issued multiple writes to the same register in
the same cycle. This problem occurs due to the latency
associated with previous instructions in the pipeline. For more
information, see the TMS320C62x/C67x CPU and Instruction
Set Reference Guide.

Action Modify your source code.

N

Name “ name” not found

Description The command cannot find the object named name.

Action If name is a symbol, be sure that it was typed correctly. If it was
not, reenter the command with the correct name. If it was,
then be sure that the associated object file is loaded.

Nesting of repeats cannot exceed 100

Description The debugger cannot simulate more than 100 levels of repeat
nesting in an input data file. If this happens, the debugger dis-
connects the input file from the pin.

Action Correct the input file so that the data does not include nesting
repetition exceeding 100. Use the PINC command to recon-
nect the input file to the desired pin.

No file connected to this pin

Description You tried to disconnect the input file from a pin that was not
previously connected to that pin.

Action Use the PINL command to list all of the pins and the files con-
nected to them. Use the PIND command to reenter the correct
pinname and filename.

P

Pinname not valid for this chip

Description You attempted to connect or disconnect an input file to an
invalid interrupt pin.

Action Reconnect or disconnect the input file to an unused interrupt
pin ().

Alphabetical Summary of Debugger Messages

 C-18

Pointer not allowed

Description This is an expression error.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Processor is already running

Description One of the RUN commands was entered while the debugger
was running free from the target system.

Action Enter the HALT command to stop the free run, then reenter
the desired RUN command.

R

Read conflicts with long operand at cycle cnum

Description Your program attempted to write more than one long result in
a single cycle on each side of the register file. Because the .L
and .S units share their long read port with the store port, op-
erations that read a long value cannot be issued on the .L and/
or .S units in the same execute packet as a store. For more
information about long path conflicts, see the
TMS320C62x/C67x CPU and Instruction Set Reference
Guide.

Action Modify your source code.

Read not allowed for port

Description You attempted to connect a file for input operation to an
address that is not configured for read.

Action Remap the port of correct the access in your source code.

Register access error

Description Either the processor is receiving a bus fault, or there are
problems with target-system memory.

Action See section C.5, Additional Instructions for Hardware Errors,
page C-26.

Alphabetical Summary of Debugger Messages

C-19Debugger Messages

S

Specified map not found
Description The MD command was entered with an address or block that

is not in the memory map.

Action Use the ML command to verify the current memory map.
When using MD, you can specify only the first address of a
defined block.

Structure member name required
Description This is an expression error—a symbol name is followed by a

period but no member name.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Structure member not found
Description This is an expression error—an expression references a non-

existent structure member.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

Structure not allowed
Description This is an expression error—the expression is attempting an

operation that cannot be performed on a structure.

Action See section C.4, Additional Instructions for Expression Errors,
page C-26.

T

Take file stack too deep
Description Batch files can be nested up to ten levels deep. The batch file

that you tried to execute with File→Take or the TAKE com-
mand calls batch files that are nested more than ten levels
deep.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you can to
copy the contents of the second file into the first. This will re-
moves a level of nesting.

Alphabetical Summary of Debugger Messages

 C-20

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Open the Breakpoint Control dialog box by selecting
Breakpoints from the Setup menu. Delete individual software
breakpoints.

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action Do not enter the USE command before entering another com-
mand that has a filename parameter. Instead, enter the sec-
ond command and specify full path information for the file-
name.

U

Undeclared port address

Description You attempted to do a connect/disconnect on an address that
is not declared as a port.

Action Verify the address of the port to be connected or discon-
nected.

User halt

Description The debugger halted program execution because you clicked
the Halt icon on the toolbar, you selected Halt! from the Target
menu, or you pressed the ESC key.

Action None required; this is normal debugger behavior.

Alphabetical Summary of Debugger Messages

C-21Debugger Messages

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Reenter the WIN command. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

Calls CPU Command

Disassembly Memory Profile

Watch

Write conflicts with long writes at cycle cnum

Description Your program attempted to write more than one long result in
a single cycle on each side of the register file. Because the .S
and .L units share a read register port for long source oper-
ands and a write register port for long results, only one of
these operations can be issued per side in an execute packet.
For more information about long path conflicts, see the
TMS320C62x/C67x CPU and Instruction Set Reference
Guide.

Action Modify your source code.

Write not allowed for port

Description You attempted to connect a file for output operation to an
address that is not configured for write.

Action Either change the software to write a port that is configured for
write, or change the attributes of the port.

Alphabetical Summary of PDM Messages

 C-22

C.3 Alphabetical Summary of PDM Messages

This section contains an alphabetical listing of the error messages that the
PDM might display. Each message contains both a description of the situation
that causes the message and an action to take.

Note:

If errors are detected in a TAKE file, the PDM aborts the batch file execution,
and the file line number of the invalid command is displayed along with the
error message.

C

Cannot communicate with “name”

Description The PDM cannot communicate with the named debugger,
because the debugger either crashed or was exited.

Action Spawn the debugger again.

Cannot communicate with the child debugger

Description This error occurs when you are spawning a debugger. The
PDM was able to find the debugger executable file, but the
debugger could not be invoked for some reason, and the
communication between the debugger and PDM was never
established. This usually occurs when you have a problem
with your target system.

Action Exit the PDM and go back though the installation instructions
in the installation guide. Reinvoke the PDM and try to spawn
the debugger again.

Cannot create mailbox

Description The PDM was unable to create a mailbox for the new debug-
ger that you were trying to spawn; the PDM must be able to
create a mailbox in order to communicate with each debug-
ger. This message usually indicates a resource limitation (you
have more debuggers invoked than your system can handle).

Action If you have numerous debuggers invoked and you’re not
using all of them, close some of them. If you are under a UNIX
environment, use the ipcs command to check your message
queues; use ipcrm to clean up the message queues.

Alphabetical Summary of PDM Messages

C-23Debugger Messages

Cannot open log file
Description The PDM cannot find the filename that you supplied when you

entered the DLOG command.

Action Be sure that the file resides in the current directory or in one of
the directories specified by the D_DIR environment variable.

� Check to see if you mistyped the filename.

Cannot open take file
Description The PDM cannot find the batch filename supplied for the

TAKE command. You will also see this message if you try to
execute a batch file that does not have a .pdm extension.

Action Be sure that the file resides in the current directory or in one of
the directories specified by the D_DIR environment variable.

� Check to see whether you mistyped the filename.

� Be sure that the batch filename has a .pdm extension.

� Be sure that the file has executable rights.

Cannot open temporary file
Description The PDM is unable create a temporary file in the current direc-

tory.

Action Change the permissions of the current directory.

Cannot seek in file
Description While the PDM was reading a file, the file was deleted or

modified.

Action Be sure that the files the PDM reads are not deleted or modi-
fied during the read.

Cannot spawn child debugger
Description The PDM couldn’t spawn the debugger that you specified,

because the PDM couldn’t find the debugger executable file
(emu6x). The PDM will first search for the file in the current
directory and then search the directories listed with the PATH
statement.

Action Check to see if the executable file is in the current directory or
in a directory that is specified by the PATH statement. Modify
the PATH statement if necessary, or change the current direc-
tory.

Alphabetical Summary of PDM Messages

 C-24

Command error

Description The syntax for the command that you entered was invalid (for
example, you used the wrong options or arguments).

Action Reenter the command with valid parameters.

D

Debugger spawn limit reached

Description The PDM spawned the maximum number of debuggers that it
can keep track of in its internal tables. The maximum number
of debuggers that the PDM can track is 2048. However, your
system may not have enough resources to support that many
debuggers.

Action Before trying to spawn an additional debugger, close any
debuggers that you don’t need to run.

I

Illegal flow control

Description One of the flow control commands (IF/ELIF/ELSE/ENDIF or
LOOP/BREAK/CONTINUE/ENDLOOP) has an error. This
error usually occurs when there is some type of imbalance in
one of these commands.

Action Check the flow command construct for such problems as an
IF without an ENDIF, a LOOP without an ENDLOOP, or a
BREAK that does not appear between a LOOP and an
ENDLOOP. Edit the batch file that contains the problem flow
command, or interactively reenter the correct command.

Input buffer overflow

Description The PDM is trying to execute or manipulate an alias or shell
variable that has been recursively defined.

Action Use the SET and/or ALIAS commands to check the defini-
tions of your aliases and system variables. Modify them as
necessary.

Alphabetical Summary of PDM Messages

C-25Debugger Messages

Invalid command
Description The command that you entered was not valid.

Action Refer to the command summary in Chapter 12, Summary of
Commands and Special Keys, for a complete list of com-
mands and their syntax.

Invalid expression
Description The expression that you used with a flow control command or

the @ command is invalid. You may see specific messages
before this one that provide more information about the prob-
lem with the expression. The most common problem is the
failure to use the $ character when evaluating the contents of
a system variable.

Action Check the expression that you used. Refer to section 11.7,
Understanding the PDM’s Expression Analysis, page 11-17,
for more information about expression analysis.

Invalid shell variable name
Description The system variable name that you used the SET command

to assign is invalid. Variable names can contain any alphanu-
meric characters or underscore characters.

Action Use a different name.

M

Maximum loop depth exceeded
Description The LOOP/ENDLOOP command that you tried to execute

had more than 10 nested LOOP/ENDLOOP constructs.
LOOP/ENDLOOP constructs can be nested up to 10 deep.

Action Edit the batch file that contains the LOOP/ENDLOOP
construct, or reenter the LOOP/ENDLOOP command inter-
actively.

Maximum take file depth exceeded
Description The batch file that you tried to execute with the TAKE com-

mand called or nested more than 10 other batch files. The
TAKE command can handle batch files that are nested up to
10 deep.

Action Edit the batch file.

Additional Instructions for Expression Errors

 C-26

U

Unknown processor name “name”

Description The processor name that you specified with the –g option or a
processor name within a group that you specified with the –g
option does not match any of the names of the debuggers that
were spawned under the PDM.

Action Be sure that you’ve correctly entered the processor name.

C.4 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should reenter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language, by Brian W. Kernighan and Dennis M. Ritchie.

C.5 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

� If a bus fault occurs, the emulator may not be able to access memory.

� The ’C6x must be reset before you can use the emulator. Most target sys-
tems reset the ’C6x at power-up; your target system may not be doing this.

Alphabetical Summary of PDM Messages / Additional Instructions for Expression ErrorsAdditional Instructions for Expression Errors / Additional Instructions for Hardware Errors

Glossary

D-1Glossary

Appendix A

Glossary

A
active window: The window that is currently selected for moving, sizing,

editing, closing, or some other function.

aggregate type: A C data type, such as a structure or array, in which a vari-
able is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the Disassembly window and does not show the File window, no matter
what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between showing assembly language code in the Disassembly
window and C code in the File window, depending on what type of code
is currently running.

B
batch file: One of two different types of files. One type contains DOS com-

mands for the PC to execute. A second type of batch file contains debug-
ger commands for the debugger to execute. The PC does not execute
debugger batch files, and the debugger does not execute PC batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

big endian: An addressing protocol in which bytes are numbered from left
to right within a word. More significant bytes in a word have lower
numbered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also little endian

Appendix D

Glossary

 D-2

breakpoint: A point within your program where execution will halt because
of a previous request from you.

C
Calls window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

cl6x: A shell utility that invokes the ’C6x compiler, assembler, and linker to
create an executable object file version of your program.

click: To press and release a mouse button without moving the mouse.

code-display windows: Windows that show code, text files, or code-
specific information. This category includes the Disassembly, File, and
Calls windows.

command line: The portion of the Command window where you can enter
commands.

Command window: A window that provides an area for you to enter com-
mands and for the debugger to echo command entry, show command
output, and list progress or error messages.

common object file format (COFF): A binary object file format that pro-
motes modular programming by supporting the concept of sections. All
COFF sections are independently relocatable in memory space; you can
place any section into any allocated block of target memory.

CPU window: A window that displays the contents of ’C6x on-chip registers,
including the program counter, status register, A-file registers, and B-file
registers.

cursor: An icon on the screen (such as an arrow or a horizontal line) that is
used as a pointing device. The cursor is usually under mouse or
keyboard control.

D
D_DIR: An environment variable that identifies the directory containing the

commands and files necessary for running the debugger.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

D_SRC: An environment variable that identifies directories containing
program source files.

Glossary

D-3Glossary

data-display windows: Windows for observing and modifying various
types of data. This category includes the Memory, CPU, and Watch
windows.

debugger: A window-oriented software interface that helps you to debug
’C6x programs running on a ’C6x emulator or simulator.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

Disassembly window: A window that displays the disassembly (reverse
assembly) of memory contents.

display area: The portion of the Command window or PDM window where
the debugger/PDM echoes command entry, shows command output,
and lists progress or error messages.

dock (a window): To anchor a floating window to an outer edge of the
debugger application window. A docked window has no title bar and
cannot be moved. However, a docked window can be resized.

drag: To move an object on the debugger display by pressing one of the
mouse buttons and moving the mouse.

E

EISA: Extended Industry Standard Architecture. A standard for PC buses.

emulator: A debugging tool that is external to the target system and pro-
vides direct control over the ’C6x processor that is on the target system.

emurst: A utility that resets the emulator.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

F

File window: A window that displays the contents of the current C code. The
File window is intended primarily for displaying C code but can be used
to display any text file.

float (a window): To cause a debugger window to sit on top of the debugger
application window outside the edges of the debugger application
window. A floating window always appears active.

Glossary

 D-4

I
init.cmd: A batch file that contains debugger-initialization commands. If this

file is not present when you first invoke the debugger, then all memory
is invalid.

I/O switches: Hardware switches on the emulator that identify the PC I/O
memory space used for emulator-debugger or EVM-debugger commu-
nications.

ISA: Industry Standard Architecture. A subset of the EISA standard.

L
little endian: An addressing protocol in which bytes are numbered from right

to left within a word. More significant bytes in a word have higher num-
bered addresses. Endian ordering is hardware-specific and is deter-
mined at reset. See also big endian

M
memory map: A map of memory space that tells the debugger which areas

of memory can and cannot be accessed.

Memory window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections found at the top of the debug-
ger display.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the Disassembly window and C code in the File
window.

O
open-collector output: An output circuit that actively drives both high and

low logic levels.

P
PC: Personal computer or program counter, depending on the context and

where it is used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means personal computer. 2) In
general debugger and program-related information, PC means program
counter, which is the register that identifies the current statement in your
program.

Glossary

D-5Glossary

PDM: Parallel Debug Manager. A program used for creating and controlling
multiple debuggers for the purpose of debugging code in a parallel-
processing environment.

point: To move the mouse cursor until it overlays the desired object on the
screen.

port address: The PC I/O memory space that the debugger uses for
communicating with the emulator. The port address is selected via
switches on the emulator board and communicated to the debugger with
the –p debugger option.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

R

ripple-carry output signal: An output signal from a counter indicating that
the counter has reached its maximum value.

S

scalar type: A C type in which the variable is a single variable, not composed
of other variables.

scroll bar: A bar on the right side or bottom of a window that allows you to
adjust the contents of the window to display hidden information.

scroll bar handle: The rectangular box in the center of the right scroll bar
in the Disassembly or Memory window that marks the center of disas-
sembled code or memory contents.

scrolling: A method of moving the contents of a window up, down, left, or
right to view contents that were not originally shown.

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the memory map.

side effects: A feature of C expressions in which using an assignment
operator in an expression affects the value of one of the components
used in the expression.

simulator: A development tool that simulates the operation of the ’C6x and
lets you execute and debug applications programs by using the C source
debugger.

Glossary

 D-6

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

status bar: An area at the bottom of the debugger application window that
displays context-sensitive help and the status of the processor.

symbol table: A file that contains the names of all variables and functions
in your program.

T

target system: A ’C6x board that works with the emulator; the emulator
doesn’t contain a ’C6x device, so it must use a ’C6x target board. Usually,
the target system is a board that you have designed; you use the emula-
tor and debugger to help you debug your design.

totem-pole output: An output circuit that actively drives both high and low
logic levels.

W

Watch window: A window that displays the values of selected expressions,
symbols, addresses, and registers.

window: A defined rectangular area of space on the display.

D-7

software breakpoints

defining command strings

memory contents

halting, temporarily

Index

Index-1

Index

! command 11-13 to 11-14, 12-12
? command

description 7-3, 12-11
display formats 7-24, 12-12
examining register contents 7-14
modifying PC 6-3
side effects 7-5 to 7-6

& operator 7-8
$$EMU$$, 3-8
$$SIM$$, 3-8
% in alias parameter 3-3
@ command 11-19, 12-13
* (default) display format 7-22
* operator (indirection) 7-9, 7-19

A
ABE pseudoregister 10-13
absolute addresses 6-16, 7-8
ACE pseudoregister 10-14
active hardware events 10-6
active window

definition D-1
making a window active 12-60

ADDR command
description 5-8, 12-13
finding current PC 6-2

address data, profile window 8-20
addresses

absolute addresses 6-16, 7-8
accessible locations 4-2
contents of (indirection) 7-9, 7-19
hexadecimal notation 7-8
I/O address space 4-14 to 4-15
in Memory window 7-8
invalid memory 4-2
nonexistent memory locations 4-2

protected areas 4-2, 4-8
symbolic addresses 7-8
undefined areas 4-2, 4-8

ADR pseudoregister 10-13

AEN pseudoregister 10-13

aggregate types
definition D-1
displaying 7-2, 7-18 to 7-21

ALIAS command 12-14
PDM version 11-15 to 11-16

Alias Control dialog box 3-2

aliasing 11-15 to 11-16
ALIAS command 12-14

PDM version 11-15 to 11-16
defining an alias 3-3
definition D-1
deleting an alias 3-4
description 3-2 to 3-4
editing an alias 3-4
limitations 3-4
redefining an alias 3-4
supplying parameters 3-3

alternative data formats for display 7-22

analysis, memory system
Analysis Statistics window 9-9
commands 9-10
counting events 9-6
defining conditions 9-5
event breakpoints 9-7
list of events 9-2
process 9-3
removing event 9-7
resetting event counters 9-9
running programs 9-8
viewing analysis data 9-9

Analysis Events dialog box
emulator 10-5
simulator 9-5

Index

Index-2

Analysis menu
emulator 10-4
simulator 9-4

analysis module 10-1 to 10-14
Analysis Statistics window 10-11
counting events 10-6

dialog box 10-6
EMU pins 10-7 to 10-9
list of 10-2

customized analysis commands 10-12
defining conditions 10-5 to 10-9
disabling 10-4
EMU pins 10-7 to 10-9

description 10-2
restrictions 10-7

enabling 10-4
functions 10-2
global breakpoints 10-9
hardware breakpoints 10-2

EMU pins 10-2, 10-7 to 10-9
list of 10-2, 10-8

internal counter 10-6
major functions 10-2
process 10-3
running programs 10-10
viewing analysis data 10-11

analysis pseudoregisters, summary 10-13 to 10-14

Analysis Statistics window
emulator 10-11
simulator 9-9

analysis status pseudoregister (AST) 10-14

ANSI C, definition D-1

arithmetic operators 13-2

arrays
displaying 7-18 to 7-21
member operators 13-2

–as shell option 2-2, 8-3

ASM command 12-14

assembler 1-8

assembly language code
displaying in Disassembly window 2-15
displaying object code 5-2 to 5-5
displaying source code 5-5

assembly mode
ASM command 12-14
definition D-1
description 2-15

assembly mode (continued)
restrictions 2-15
typical display 2-15

assembly optimizer 1-8
assignment operators 7-5 to 7-6, 13-3
assistance from TI vii
AST pseudoregister 10-14
auto mode

C command 12-16
definition D-1
description 2-14
restrictions 2-14
typical assembly display 2-15
typical C display 2-16

autoexec.bat file, definition D-1

B
BA command 12-15
basic data-management commands 7-3
basic run commands 6-4 to 6-8
batch files

board.cfg B-1 to B-6
sample B-2, B-4

board.dat 2-11, B-1 to B-6
controlling command execution 11-10 to 11-12

conditional commands 3-8, 11-10 to 11-12,
12-26 to 12-61

looping commands 3-9 to 3-10,
11-11 to 11-22, 12-28 to 12-29

definition D-1
displaying 5-6
displaying text when executing 3-7, 11-12,

12-21
echoing messages 3-7, 11-12, 12-21
emuinit.cmd 4-11, A-1
entering memory analysis commands 9-13
executing 3-11, 12-55
halting execution 3-11
init.clr 12-46, A-1
init.cmd

definition D-4
during invocation 4-11, A-2

init.pdm 2-8
initialization

emuinit.cmd 4-11, A-1
init.cmd 4-11, A-2
init.pdm 2-8
sample memory map 4-9
siminit.cmd 4-11, A-1

Index

Index-3

batch files (continued)
mem.map 4-12
memory maps 4-10, 4-13
pausing 3-11, 12-36
sample file 3-7
sim6x.cfg 2-11
siminit.cmd A-1
TAKE command 4-13, 12-55

PDM version 11-9
BD command 12-15

benchmarking
CLK pseudoregister 6-12
constraints 6-12
definition D-1
description 6-12
RUNB command 12-45

big endian, defined D-1

big-endian format, selecting (–me option) 2-11

bitwise operators 13-3

BL command 12-15

board configuration
creating the file B-2 to B-6
naming an alternate file 2-11, B-6
specifying the file B-6
translating the file B-5

board.cfg file B-1 to B-6
device names B-3
device types

SPL B-3
TMS320C6x B-3

sample B-2, B-4
translating B-5
types of entries B-3 to B-5

board.dat, changing from the default file 2-11

board.dat file B-1 to B-6
default B-1

.bpt extension 6-18

BR command 12-16

BREAK command 11-11 to 11-22, 12-28 to 12-29

break events 10-2

Breakpoint Control dialog box 6-16, 8-15

breakpoint symbol 6-17, 8-16

breakpoints (event) 9-7

breakpoints (hardware) 10-8
definition D-2
global 10-7 to 10-9
types of events 10-2

breakpoints (software)
adding 6-15 to 6-16, 12-15
benchmarking with RUNB 6-12
clearing 6-17, 12-15, 12-16
command summary 12-7
definition D-2
description 6-14 to 6-19
listing set breakpoints 6-15, 12-15
loading breakpoint settings 6-19
maximum number 6-15
multiple or single statement 6-15
restrictions 6-15
saving breakpoint settings 6-18
setting 6-15 to 6-16
setting profile stopping points 8-15 to 8-16
with conditional run 6-11

Breakpoints toolbar icon
clearing a breakpoint 6-17
clearing all software breakpoints 6-17
loading breakpoint settings 6-19
saving breakpoint settings 6-18
setting a breakpoint 6-15

.bss section, clearing 2-10

C
c (ASCII character) display format 7-22
C (ASCII) display format 7-22
C command 12-16
C compiler 1-8
–c debugger option 2-10
C expressions 7-5 to 7-6, 13-1 to 13-6
C optimizer 1-8
C source

displaying 2-14, 2-16, 12-23
managing memory data 7-9

c6xtools directory
for HPUX systems 2-3
for SPARC systems 2-3
for Windows 95 systems 2-3

CALLS command 12-16
effect on debugging modes 2-17

Calls window
definition D-2
description 1-4
displaying code for a function 5-7

casting
definition D-2
description 7-9, 13-4

Index

Index-4

Change View context menu option 8-23

char data type 7-22, 7-23

CHDIR (CD) command 12-17, A-2

cl6x shell, definition D-2

clearing software breakpoints
debugger only 6-17
profiler only 8-16

clearing the .bss section (–c) 2-10

clearing the display area 12-17

clicking, definition D-2

CLK pseudoregister
description 6-12
restrictions in C code 6-12
validity of value in 6-12

closing
debugger 2-18, 12-42
log files 3-13, 11-10, 12-21
PDM 12-42
Watch window 7-20, 12-61

CLS command 12-17

CNEXT command 6-10, 12-18

code
debugging 1-13
debugging optimized code 2-2
preparing for debugging 2-2
profiling 8-1 to 8-28
profiling optimized code 2-2

code development 1-7 to 1-9

code-display windows
Calls window 1-4, 5-7
definition D-2
description 1-4
Disassembly window 1-4 to 1-14, 5-4 to 5-5
File window 1-4, 5-6 to 5-8

COFF
in code development 1-8
loading 4-2

comma operator 13-4

command history, PDM version 11-13 to 11-14,
12-12

command line
changing the prompt 12-40
definition D-2

Command window
definition D-2
description 1-4
display area, clearing 12-17

Command window (continued)
display during profiling 8-27
recording information from the display

area 3-12 to 3-13, 12-20

commands
alphabetical summary 12-11 to 12-61
available during profiling 8-4
available with analysis module 10-12
available with memory system analysis 9-10
breakpoint commands summary 12-7
code-execution (run) commands summary 12-8
command strings 3-2 to 3-4, 11-15 to 11-16
conditional commands 3-8, 11-10 to 11-12,

12-26 to 12-61
controlling command execution

conditional commands 11-10 to 11-12,
12-26 to 12-61

looping commands 11-11 to 11-22,
12-28 to 12-29

customizing 3-2 to 3-4, 10-12, 11-15 to 11-16
data-management commands summary 12-5
entering and using 3-1 to 3-13
entering from a batch file 3-11
entering operating system commands 3-5
file-display commands 12-4
functional summary (debugger) 12-2 to 12-10
help (online) access 1-14
load commands summary 12-4
looping commands 3-9 to 3-10, 11-11 to 11-22,

12-28 to 12-29
memory commands summary 12-7
mode commands 12-4
PDM commands 12-3
profiling commands 12-62 to 12-65
profiling commands summary 12-9
restrictions on validity 2-17
screen-customization commands summa-

ry 12-4
system commands 11-16
system commands summary 12-6
using a system shell 3-6
window commands 12-4

common object file format, definition D-2

compiler 1-8

composer utility B-5

condition for analysis 10-5, 10-9

conditional commands 3-8, 11-10 to 11-12,
12-26 to 12-61

conditional execution 6-11

Index

Index-5

conditional run 6-11

conditional single-stepping 6-8, 6-11

configure analysis counter events pseudoregister
(ACE) 10-14

configure hardware breakpoints pseudoregister
(ABE) 10-13

constraints
benchmarking 6-12
CLK 6-12

context-sensitive help, accessing 1-14

CONTINUE command 11-11 to 11-22,
12-28 to 12-29

continuous run
halting 6-13
starting 6-6

continuous step
halting 6-13
starting 6-10

continuous step execution, stepping until a break-
point 6-10

Count CPU Events dialog box 10-6

count data 8-21

counter, internal, disabling 10-6

counters, resetting internal event (simulator) 9-9

CPU window
definition D-2
description 1-4, 7-13 to 7-17
editing registers 7-5
reordering registers 7-14

–cr linker option 2-10

CSTEP command 6-9, 12-18

current directory, changing 12-17, A-2

current field, editing 7-5

current PC
finding 6-2
selecting 6-2

cursors, definition D-2

customizing, memory types 4-4

customizing the display
changing the prompt 12-40
loading a custom display 12-46
saving a custom display 12-52

D
d (decimal) display format 7-22

–d debugger option 2-10

D_DIR environment variable, effects on debugger
invocation A-1

D_OPTIONS environment variable 2-10 to 2-13
definition D-2
effects on debugger invocation A-1, A-2
for HPUX systems 2-5 to 2-7
for SPARC systems 2-5 to 2-7
for Windows 95 systems 2-5
ignoring (–x option) 2-13
setting up 2-5

D_SRC environment variable 2-9
definition D-2
effects on debugger invocation A-1
for HPUX systems 2-4 to 2-5
for SPARC systems 2-4 to 2-5
for Windows 95 systems 2-4
naming additional directories A-2
setting up 2-4

D_DIR environment variable 2-8
definition D-2
for HPUX systems 2-3 to 2-4
for SPARC systems 2-3
for Windows 95 systems 2-3
setting up 2-3

DASM command
description 12-19
effect on debugging modes 2-17
finding current PC 6-2

data-display windows, definition D-3

data formats 7-22

data management, determining variable types 7-3

data-management commands
controlling data format 7-9
EVAL command, PDM version 12-22
side effects 7-5 to 7-6
summary 12-5

data memory, adding to memory map 4-10 to 4-18

data type
changing the default 7-22
for displaying debugger data 7-23
parameter for SETF command 7-23

data-management commands, EVAL command,
PDM version 11-21

Index

Index-6

data-display windows
CPU window 1-4, 7-2, 7-13 to 7-17
description 1-4
Memory window 1-4, 7-2, 7-7 to 7-12
overview 7-2
Watch window 1-4, 7-2, 7-18 to 7-21

data-management
changing data value 7-5 to 7-8
changing memory range displayed in Memory

window 7-7 to 7-25
changing the default display format 7-24
commands 7-22 to 7-25
editing data in a window 7-5
editing data with expressions that have side ef-

fects 7-5 to 7-25
evaluating an expression 7-3
in a Watch window 7-18 to 7-20
in memory 7-7 to 7-12
in registers 7-5, 7-13

debugger
commands

alphabetical summary 12-11 to 12-61
functional summary 12-2 to 12-10
profiling 12-62 to 12-65

definition D-3
description 1-3 to 1-6
display, illustration 1-3
exiting 2-18, 12-42
installation, describing the target sys-

tem B-1 to B-6
invocation 12-51

description 2-7 to 2-9
emu?? command 2-7
emu6x command 2-7
options 2-10 to 2-13
sim6x command 2-7
standalone 2-7
task ordering A-1 to A-3
under PDM control 2-8 to 2-9

key features 1-2
messages C-1 to C-26
setting up default options (D_OPTIONS) 2-5

debugging modes
assembly mode 2-15
auto mode 2-14
command summary 12-4
default mode 2-14
description 2-14 to 2-17
mixed mode 2-16

debugging modes (continued)
restrictions 2-17
restrictions on validity 2-17

decrement operator 13-3

default
data formats 7-22 to 7-25
debugging mode 2-14
display 2-14
group 11-4, 12-47
memory map 4-9
Memory window 7-7
stopping point for profiling 8-15

defining an alias 3-3

defining areas for profiling
description 8-5 to 8-12
disabling areas 8-10 to 8-12, 12-62 to 12-63
enabling areas 8-11 to 8-12, 12-63
marking areas 8-5 to 8-9, 12-62
restrictions 8-12
unmarking areas 8-12, 12-64

defining command strings. See aliasing; commands,
command strings

deleting watched values 7-20

determining type of a variable 7-3

developing code 1-7 to 1-9

device name B-3

device types
debugger devices B-3
SPL B-3
TMS320C6x B-3

dgroup 11-4

dialog boxes
accessing online help 1-14
enabling parameters 10-8

DIR command 12-19

directories
–i debugger option 2-11
auxiliary files

for HPUX systems 2-3
for SPARC systems 2-3
for Windows 95 systems 2-3

c6xtools
for HPUX systems 2-3
for SPARC systems 2-3
for Windows 95 systems 2-3

changing current directory 12-17

Index

Index-7

directories (conintued)
identifying additional source directories 12-57

for HPUX systems 2-4
for SPARC systems 2-4
for Windows 95 systems 2-4

identifying alternate directories (D_DIR) 2-3
identifying current directory A-2
identifying directories with program source files

(D_SRC) 2-4
listing contents of current directory 12-19
relative pathnames 12-17
search algorithm 3-11, A-1 to A-3
USE command 12-57

disabling analysis 9-4, 10-4
disabling areas for profiling 8-10 to 8-12
disabling memory mapping 4-7 to 4-8
disassembly

definition D-3
description 5-4
displaying 5-4 to 5-5

Disassembly window
Address field 5-4
definition D-3
description 1-4
modifying the display 12-19
running code to a specific point 6-5
scrolling through the contents 5-5
setting a breakpoint 6-15
setting current PC 6-2
viewing disassembly 5-4 to 5-5

DISP command
description 12-19
display formats 7-24, 12-20
effect on debugging modes 2-17

display, basic debugger 1-3
display area

clearing 12-17
definition D-3
recording information from 3-12 to 3-13, 11-10,

12-20
display-customization commands 12-4
display formats

? command 7-24, 12-12
data types 7-23
description 7-22 to 7-25
DISP command 7-24, 12-20
EVAL command 11-21, 12-23
MEM command 7-24, 12-33
resetting types 7-24

display formats (continued)
SETF command 7-22 to 7-26, 12-49
table 7-22
WA command 7-24, 12-59

Display Rate frequency bar, Profile window 8-17
displaying

assembly language code 5-2
disassembly 5-4
source 5-5

batch files 5-6
C code 5-6 to 5-8
C function 5-7
code at a specific point 5-8
data for load and store instructions (emula-

tor) 7-2
data in nondefault formats 7-22 to 7-25
debugger on a different machine (–d op-

tion) 2-10
pointer data 7-20
register contents 7-13
structure data 7-20
text files 5-6
text when executing a batch file 3-7, 12-21
watched values 7-19 to 7-20

DLOG command 12-20
ending recording session 11-10
PDM version 11-10
starting recording session 11-10

docking a window, definition D-3
double data type 7-23
double-precision floating-point registers 7-17
dragging, definition D-3

E
e (exponential floating-point) display format 7-22
E command 12-22
ECHO command 3-7, 12-21

PDM version 11-12
editing

data values 7-5
expression side effects 7-5
overwrite method 7-5

EISA, definition D-3
ELIF command 11-10 to 11-12, 12-21,

12-26 to 12-61
ELSE command 3-8, 12-27

PDM version 11-10 to 11-12, 12-26 to 12-61
$$EMU$$ constant 3-8

Index

Index-8

EMU pins 10-9
description 10-2
external counter 10-9
restrictions 10-7
setup for external counter 10-7 to 10-9
setup for global breakpoints 10-9

emu6x command 2-8, 12-51
options 2-7, 2-10 to 2-13

–n 2-11
emuinit.cmd file 2-3, A-1

emulator
definition D-3
describing the target system to the debug-

ger B-1 to B-6
creating the board configuration

file B-2 to B-6
specifying the file B-6
translating the file B-5

displaying data for load and store instruc-
tions 7-2

$$EMU$$ constant 3-8
external counter 10-7
halting on the first instruction of an interrupt ser-

vice routine 6-4
invoking the debugger 2-7, 12-51

standalone 2-7
under PDM control 2-8 to 2-9

reconnecting to debugger 12-42
resetting 2-6, 6-7
running code while disconnected from target sys-

tem 6-6
specifics in halting 6-13
using conditional RUN command 6-4

emurst command 2-6

emurst file, definition D-3

enable analysis pseudoregister (AEN) 10-13

enabling analysis 9-4, 10-4

enabling areas for profiling 8-11 to 8-12

enabling memory mapping 4-7 to 4-8

ENDIF command 3-8, 12-27
PDM version 11-10 to 11-12, 12-26 to 12-61

ENDLOOP command 3-9 to 3-10, 12-29
PDM version 11-11 to 11-22, 12-28 to 12-29

entering commands, from the PDM 2-8, 11-2

entering operating system commands 3-5

entering profiling environment
menu option 8-4
–profile option 2-12

entry point (of program) 6-2
environment variables

D_OPTIONS 2-5, 2-10 to 2-13
D_DIR 2-3, 2-8
D_SRC 2-4, 2-9
definition D-3
effects on debugger invocation A-1
for debugger options 2-10 to 2-13

error messages C-22 to C-26
beeping 12-51, C-2
description C-1 to C-26

escape key, halting execution 6-13
EVAL command

description 7-4, 12-22
display formats 11-21, 12-23
modifying PC 6-3
PDM version 11-21, 12-22
side effects 7-5 to 7-6

evaluating an expression 7-3
event

counting (emulator) 10-6
counting (simulator) 9-6
definition (emulator) 10-5
definition (simulator) 9-5
event breakpoint (simulator) 9-7
hardware breakpoint 10-8
removing (simulator) 9-7

event_break command 9-11
event_counter_reset command 9-12
event_counter_start command 9-11
event_disable command 9-11
event_enable command 9-10
event_list command 9-12
event_number parameter, determining 9-10
event_reset command 9-12
exclusive data 8-17, 8-20, 8-21
exclusive maximum data 8-17, 8-20, 8-21
executing code

checking execution status 11-20, 12-48
finding execution status 11-8, 12-53
while disconnected from the target sys-

tem 12-41
executing code while disconnected from the target

system 6-6, 12-45
executing commands 3-1 to 3-13
execution, pausing 11-13
exiting the debugger 2-18, 12-42

Index

Index-9

expressions
addresses 7-8
analysis 13-4 to 13-6
description 13-1 to 13-6
evaluating 11-21

by the PDM 11-17
evaluation 12-22

with ? command 7-3, 12-11
with DISP command 12-19
with EVAL command 7-4, 12-22
with LOOP command 3-9, 12-29

operators 11-17, 13-2 to 13-3
restrictions 13-4
void expressions 13-4
with side effects 7-5 to 7-6

external counter value pseudoregister
(XCNT) 10-14

external event counter 10-7 to 10-9

external interrupts 4-16
connect input file 4-17, 12-37
disconnect pins 4-18, 12-38
list pins 4-18, 12-38
PINC command 4-17, 12-37
PIND command 4-18, 12-38
PINL command 4-18, 12-38
programming simulator 4-17, 4-18
setting up input file

relative clock cycle 4-16
repetition 4-17

setting up input files 4-16
absolute clock cycle 4-16

F
f (decimal floating-point) display format 7-22

–f debugger option 2-11, B-6

F1 key, accessing online help 1-14

F5 key
running a profiling session 8-17
running code 6-4, 9-8, 10-10

F8 key, single-stepping 6-9

F9 key, changing the File window display 5-7

F10 key, single-stepping over function calls 6-10

faster simulator
debugger features not supported 1-11
description 1-10

features, not supported by limited simulators 1-11

FILE command
description 12-23
effect on debugging modes 2-17

File menu
Load Program option 5-2, 7-11
Load Symbols option 5-3
Log File option 3-12
Open option 5-6
Reload Program option 5-3
Take option 3-11

File window
definition D-3
description 1-4, 5-6 to 5-8
displaying any text file 5-6
displaying assembly language source 5-5
running code to a specific point 6-5
setting a breakpoint 6-15
setting current PC 6-2

file/load commands 12-4

files
batch files 3-7
connecting to I/O ports 4-14 to 4-15, 12-31
creating executable object files 2-2
debugger executable 2-7
disconnecting from I/O ports 4-15, 12-33
executable (emulator) 2-6
loading object files 5-2
log files 3-12 to 3-13, 11-10
saving memory to a file 7-10 to 7-11, 12-35

FILL command 12-24

Fill Memory dialog box 7-11, 7-12

FILLB command 12-24

float data type 7-23

floating a window, definition D-3

floating-point double-precision registers 7-17

floating-point operations 13-4

floating-point single-precision registers 7-16

floating–point simulator
debugger features not supported 1-11
description 1-10

flow diagram
analysis process (emulator) 10-3
analysis process (simulator) 9-3
code development 1-7
debugging process 1-13
profiling process 8-3

full profile 8-17, 12-36

Index

Index-10

FUNC command
description 5-7, 12-24
effect on debugging modes 2-17

function calls
displaying functions 12-24
executing function only 12-43
in expressions 7-5, 13-4
stepping over 12-18, 12-35
tracking in Calls window 5-7

G
–g assembler option, displaying assembly language

source 5-5

–g shell option 2-2, 6-9, 8-3

global breakpoints 10-9

GO command 6-5, 12-25

green arrow 8-6, 8-10, 8-11

grouping/reference operators 13-2

groups
adding a processor 11-4, 12-48
commands

SET command 11-4 to 11-5, 12-47 to 12-48
UNSET command 11-5, 12-56

defining 11-4 to 11-5, 12-47
deleting 11-5, 12-56
examples 11-3
identifying 11-2 to 11-5
listing all groups 11-5, 12-48
setting default 11-4, 12-47

H
HALT command 6-13, 12-25

Halt toolbar icon 6-13

halting
batch file execution 3-11
debugger 2-18, 12-42
emulator-specific information 6-13
multiple processors 10-9
PDM 12-42
processors in parallel 11-8, 12-37
program execution 2-18, 6-13, 12-42
target system 12-25
temporarily. See breakpoints (software)

hardware breakpoints, dialog box 10-8

help, accessing 1-14 to 1-15

HELP command 1-14 to 1-15, 12-25, 12-26
Help menu, Help Topics option 1-14
Help toolbar icon 1-14
Help Topics toolbar icon 1-14
hexadecimal notation 6-16

addresses 7-8
data formats 7-22

history, of commands 12-12
HISTORY command 11-14, 12-26
history of commands 11-13 to 11-14

I
–i debugger option 2-11, A-3
I/O memory

adding to memory map 4-10 to 4-18
connecting I/O port 4-14 to 4-15
deleting from memory map 12-32
disconnecting I/O port 4-15
simulating 4-14 to 4-15, 12-31, 12-33

memory
batch file search order, memory initializa-

tion 4-11
invalid addresses 4-2
invalid locations 4-8
map, adding ranges 4-10 to 4-18
mapping, MA command 4-10 to 4-18
nonexistent locations 4-2
protected areas 4-2, 4-8
simulating I/O memory 4-14 to 4-15
simulating ports

MC command 4-14 to 4-15
MI command 4-15

undefined areas 4-2, 4-8
valid types 4-4, 4-5, 4-10

I/O switch settings, definition D-4
ICNT pseudoregister 10-14
icons, toolbar (basic display) 1-3
identifying a new board configuration file (–f) 2-11
identifying a new simulator configuration file 2-11
identifying additional source directories

–i option 2-11
D_DIR environment variable 2-3

identifying directories containing program source
files (D_SRC) 2-4

identifying new initialization file (–t option) 2-13
IF/ELIF/ELSE/ENDIF commands 11-10 to 11-12,

12-26 to 12-61

Index

Index-11

IF/ELSE/ENDIF commands
conditions 3-9, 3-10, 12-27
creating initialization batch file 3-8
description 3-8, 12-27
predefined constants 3-8

ignoring D_OPTIONS (–x option) 2-13

inclusive data 8-20, 8-21

inclusive maximum data 8-20, 8-21

increment operator 13-3

indirection operator (*) 7-9, 7-19

init.clr file 12-46, A-1

init.cmd file
definition D-4
during invocation 2-13, 4-11, A-2

init.pdm file 2-8

initialization batch files
creating using IF/ELSE/ENDIF 3-8
emuinit.cmd A-1
example 4-9
init.cmd 4-11, A-2
init.pdm 2-8
naming an alternate file (–t option) 2-13
siminit.cmd A-1

INPORT keyword 4-10

int data type 7-23

internal counter, disabling 10-6

internal counter value pseudoregister
(ICNT) 10-14

interpreting profile data 8-25

interrupt pins 4-16

interrupt simulation
ending 4-18
initiating 4-17

interrupts ignored while single-stepping 6-8

invalid memory addresses 4-2, 4-8

invoking
debugger 2-7 to 2-9, 12-51

standalone 2-7
under PDM control 2-8 to 2-9

parallel debug manager 2-8

IOPORT keyword 4-10

ISA, definition D-4

K
key sequences, halting actions 11-6, 11-7, 12-40,

12-47

L
limits

breakpoints 6-15
customized prompt length 12-40
paths A-3

LINE command 12-28
linker 1-8
little endian, defined D-4
little-endian format 2-11
Load Breakpoint File dialog box 6-19
LOAD command 7-21, 12-28
load instructions, displayed by the emulator 7-2
Load List menu option (breakpoints) 6-19
Load Program dialog box 5-2
load/file commands 12-4
loading

assembly language code 5-2 to 5-5
batch files 3-11
COFF files, restrictions 4-2
object code

after invoking the debugger 5-2
description 5-2 to 5-5
symbol table only 2-13, 5-3, 12-50
while invoking the debugger 2-7, 2-9, 5-3
with global symbols only 2-13
with symbol table 5-2
without symbol table (RELOAD) 5-3, 12-42

saved breakpoint settings 6-19
Log File dialog box, opening a file 3-12
log files 3-12 to 3-13, 11-10
logical operators

conditional execution 6-11
description 13-2

long data type 7-23
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 11-11 to 11-22, 12-28 to 12-29
LOOP/ENDLOOP commands

conditions 3-9, 3-10, 12-30
description 3-9 to 3-10, 12-29

looping commands 3-9 to 3-10, 11-11 to 11-22,
12-28 to 12-29

Index

Index-12

M
MA command 4-9, 4-10 to 4-18, 12-30

emulator syntax 4-10

managing data
basic commands 7-3 to 7-4
changing data values 7-5 to 7-6
in memory 7-7 to 7-12
in registers 7-13 to 7-17
in Watch windows 7-18 to 7-21

MAP command 12-31

marking areas for profiling 8-5 to 8-9

MC command 4-14 to 4-15, 12-31

MD command 12-32

–me debugger option 2-11

MEM command
description 7-8, 12-32
display formats 12-33
effect on debugging modes 2-17
using to change display format of data 7-24

memory
batch file search order A-1
command summary 12-7
data formats 7-22 to 7-25
displaying in different numeric format 7-9
filling

byte by byte 7-12, 12-24
word by word 7-11 to 7-12, 12-24

saving 12-35
saving values to a file 7-10 to 7-11
simulating I/O memory 12-31, 12-33
simulating ports

MC command 12-31
MI command 12-33

memory contents. See data management; memory
window

Memory Map Control dialog box 4-3

memory mapping
adding ranges 4-3 to 4-5, 4-10, 12-30
checking memory accesses against 4-2
command summary 12-7
creating a map 4-3 to 4-6
default map 4-9
defining a map 4-2
defining and executing a map in a batch

file 4-10
definition (memory map) D-4
deleting ranges 4-6, 12-32

memory mapping (continued)
description 4-1 to 4-18
disabling 4-7 to 4-8
enabling 4-7 to 4-8
listing current map 4-3
modifying a map 4-2, 4-3, 4-6
multiple maps 4-13
potential problems 4-2
resetting 12-34
restrictions 4-4
returning to default 4-12
sample map 4-9

Memory menu
Fill Byte option 7-12
Fill Word option 7-11
Mapping option 4-3, 4-4
Save option 7-10

memory system, Analysis Statistics window 9-9

memory system analysis
counting events 9-6
defining conditions 9-5
event breakpoints 9-7
not supported by fast simulator 9-1
process 9-3
removing event 9-7
resetting event counters 9-9
running programs 9-8
viewing analysis data 9-9

memory system analysis commands
entering through a batch file 9-13
event_break 9-11
event_counter_reset 9-12
event_counter_start 9-11
event_disable 9-11
event_enable 9-10
event_list 9-12
event_reset 9-12

memory types
customizing 4-4
list of basic types 4-5

Memory window
Address field 7-7
changing range of memory displayed 7-7
definition D-4
description 1-4, 7-7 to 7-12
displaying memory contents 7-7 to 7-26
editing memory contents 7-5
modifying display 12-32
naming 7-8

Index

Index-13

Memory window (continued)
opening additional windows 7-8
scrolling through the contents 7-7

menu
context menus 1-6
definition (pulldown menu) D-5

menu bar
basic display 1-3
definition D-4

messages C-1 to C-26

–mg shell option 2-2

MI command 4-15, 12-33

MIX command 12-33

mixed mode
definition D-4
description 2-16
MIX command 12-33
restrictions 2-17
typical display 2-17

ML command 12-34

mode commands 12-4

modifying
current directory 12-17
data values 7-5
memory map 4-2, 4-3

mouse icon 8-6

MOVE command 12-34

moving a window 12-34

MR command 12-34

MS command 12-35

multiple debuggers, invoking 2-8

N
–n debugger option 2-9, 2-11, 11-2, 12-51

natural format 13-5

Next C Statement toolbar icon 6-10

NEXT command 6-10, 12-35

Next toolbar icon 6-10

nonexistent memory locations 4-2

notational conventions iv to v

O
o (octal) display format 7-22

–o shell option 2-2

.obj extension 7-10

object code
–v option 2-13
loading global symbols only (–v option) 2-13
loading symbol table only (–s option) 2-13
–s option 2-13, 5-3

object files
creating 5-2
loading 2-9

after invoking the debugger 5-2
LOAD command 12-28
symbol table only 2-13, 12-50
while invoking the debugger 2-7, 2-9, 5-3
with global symbols only 2-13
with symbol table 5-2
without symbol table (RELOAD) 5-3, 12-42

online help, accessing 1-14 to 1-15

Open File dialog box 5-6

Open Take File dialog box 3-11

Open toolbar icon 5-6

open-collector output, definition D-4

operating system
entering commands from the debug-

ger 3-5 to 3-13, 12-54
entering commands from the PDM 12-54
exiting from system shell 12-54

operators 11-17
& operator 7-8
* operator (indirection) 7-9, 7-19
Boolean precedence 3-10
causing side effects 7-6
comma operator 13-4
description 13-2 to 13-3
in expressions 3-10, 6-11

optimized code
debugging 2-2
profiling 2-2

optimizer
assembly 1-7
C 1-7

options
debugger 2-10 to 2-13
emurst 2-6

Index

Index-14

OUTPORT keyword 4-10
overwrite editing 7-5

P
p (valid address) display format 7-22
–p debugger option 2-12
P|R keyword 4-10
P|R|W keyword 4-10
P|W keyword 4-10
parallel debug manager

adding a processor to a group 12-48
assigning processor names, –n option 2-9,

12-51
changing the PDM prompt 12-48
checking the execution status 12-48
closing 12-42
command history 12-12
commands 12-3

! command 12-12
@ command 12-13
ALIAS command 12-14
DLOG command 12-20
ECHO command 12-21
EVAL command 12-22
HELP command 12-26
HISTORY command 12-26
IF/ELIF/ELSE/ENDIF com-

mands 12-26 to 12-61
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 12-28 to 12-29
PAUSE command 3-11, 12-36
PDM command 2-8
PESC command 12-36
PHALT command 12-37
PRUN command 12-40
PSTEP command 12-41
QUIT command 12-42
RUNF command 12-41
SEND command 12-46 to 12-47
SET command 12-47 to 12-48
SPAWN command 2-8 to 2-9, 12-51
STAT command 12-48, 12-53
TAKE command 12-55
UNSET command 12-56
viewing descriptions 12-26

creating system variables 12-48
defining a group 12-47
definition D-5

parallel debug manager (continued)
deleting a group 12-56

UNSET command 12-56
description 1-12
displaying text strings 12-21
finding the execution status 12-53
global halt 12-37
grouping processors, SET com-

mand 12-47 to 12-48
halting code execution 12-36
invoking 2-8
listing all groups of processors 12-48
messages C-22 to C-26
overview 2-8
pausing 3-11, 12-36
recording information from the display

area 12-20
running code 12-40
sending commands to debug-

gers 12-46 to 12-47
setting the default group 12-47
single-stepping through code 12-41
supported operating systems 2-8
using with UNIX 2-8

parallel debug manager (PDM) 11-1 to 11-21
adding a processor to a group 11-4
assigning processor names 11-2

–n option 11-2
changing the PDM prompt 11-19
checking the execution status 11-20
command history 11-13 to 11-14
commands

! command 11-13 to 11-14
@ command 11-19
ALIAS command 11-15 to 11-16
creating system variables 11-18 to 11-19
deleting system variables 11-20
DLOG command 11-10
ECHO command 11-12
EVAL command 11-21
HISTORY command 11-14
IF/ELIF/ELSE/ENDIF com-

mands 11-10 to 11-12
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 11-11 to 11-22
PAUSE command 11-13
PESC command 11-8
PHALT command 11-8
PRUN command 11-7
PRUNF command 11-7

Index

Index-15

parallel debug manager (PDM) (continued)
commands

PSTEP command 11-7
SEND command 11-6
SET command 11-4 to 11-5
STAT command 11-8, 11-20
SYSTEM command 11-16
TAKE command 11-9
UNALIAS command 11-15 to 11-16
UNSET command 11-5

controlling command execution 11-10 to 11-12
creating system variables 11-18 to 11-19

concatenating strings 11-18
substituting strings 11-19

defining a group 11-4
deleting a group 11-5

UNSET command 11-5
deleting system variables 11-20
displaying text strings 11-12
expression analysis 11-17
finding the execution status 11-8
global halt 11-8
grouping processors 11-2 to 11-5

example 11-3
SET command 11-4 to 11-5

halting code execution 11-8
listing all groups of processors 11-5
listing system variables 11-20
pausing 11-13
recording information from the display

area 11-10
running code 11-7
running free 11-7
sending commands to debuggers 11-6
setting the default group 11-4
single-stepping through code 11-7
system variables 11-18 to 11-20

parameters
emu?? command 2-7
emu6x command 2-7
in alias definition (%) 3-3
notation iv
sim6x command 2-7
SPAWN command 2-8 to 2-9, 12-51

path environment variable 2-8

PATH statement 2-8, 12-51

PAUSE command 3-11, 11-13, 12-36

PC (program counter)
definition D-4
finding the current PC 6-2
modifying 6-2

PDM, invocation 2-7

PDM command 2-8

PESC command 11-8, 12-36

PF command 12-36

PHALT command 11-8, 12-37

PINC command 4-17, 12-37

PIND command 4-18, 12-38

PINL command 4-18, 12-38

pointers
natural format 13-5
typecasting 13-5

pointing, definition D-5

port address 2-12, 4-14 to 4-15
definition D-5

ports, simulating 4-14 to 4-15, 12-31, 12-33

PQ command 12-38

PR command 12-39

PRAM keyword 4-10

predefined constants for conditional com-
mands 3-8

.prf extension 8-27

processor name 2-11

processors
assigning names 11-2
organizing into groups 11-3 to 11-5

PROFILE command 12-39

profile cycles data 8-25

–profile debugger option 2-12

Profile Marking dialog box
disabling areas

description 8-10 to 8-11
valid areas 8-13 to 8-14

enabling areas
description 8-11
valid areas 8-13 to 8-14

marking areas
description 8-8 to 8-9
valid areas 8-9

unmarking areas
description 8-12
valid areas 8-13 to 8-14

Index

Index-16

Profile menu
Change View option 8-24
Profile Mode option 8-4
Run option 8-17
Save All option 8-28
Save View option 8-27
Select Areas option 8-8

Profile Run dialog box
resuming a session 8-19
running a session 8-17

Profile View dialog box, areas for viewing 8-13
Profile View dialog box

changing profile display 8-22, 8-24
sorting profile data 8-23

Profile window
changing profile display 8-22, 8-24
description 1-4, 8-20 to 8-26
displaying areas 8-24 to 8-25
displaying different data 8-21 to 8-22
marking areas 8-8
resetting 8-25, 12-58
sorting data 8-23
viewing associated code 8-25 to 8-26

profiling
areas

description 8-5 to 8-12
disabling 8-10 to 8-12, 12-62 to 12-63
enabling 8-11 to 8-12, 12-63
marking 8-5 to 8-9, 12-62
restrictions 8-12
unmarking 8-12, 12-64
valid 8-9

breakpoints (software)
clearing 8-16
resetting 8-16
setting 8-15

changing display 8-24 to 8-25, 12-65
collecting statistics

full statistics 8-17 to 8-18, 12-36
subset of statistics 8-17 to 8-18, 12-38

commands
debugger commands available during profil-

ing 8-4
MA command 4-10
summary for batch files 12-62 to 12-65
summary for debugger command line 12-9

compiling a program for profiling 8-3
description 8-1 to 8-28
entering environment 2-12, 8-4
highlighting marked areas 8-6 to 8-7

profiling (continued)
key features 8-2
overview 8-3
resetting Profile window 8-25, 12-58
restrictions 8-4
resuming a session 8-19, 12-39
running a session

description 8-17 to 8-19
full 8-17 to 8-18, 12-36
quick 8-17 to 8-18, 12-38

saving statistics
all views 8-27, 12-57
current view 8-28, 12-57

stopping point
adding 8-15, 12-45
deleting 8-16, 12-46, 12-52
description 8-15 to 8-16
listing 12-50
resetting 8-16, 12-52

strategy 8-3
switching to profile mode 12-39
viewing data

associated code 8-25 to 8-26
description 8-20 to 8-26
displaying areas 8-24 to 8-25, 12-65
displaying different data 8-21 to 8-22, 12-65
sorting data 8-23, 12-65

program
debugging 1-13
entry point

finding 6-2
resetting 12-43

halting execution 2-18, 6-13, 12-42
preparation for debugging 2-2
running 6-4 to 6-5

program address breakpoint value pseudoregister
(ADR) 10-13

program memory, adding to memory
map 4-10 to 4-18

PROM keyword 4-10

PROMPT command 12-40

PROTECT keyword 4-10

protected area of memory 4-2

PRUN command 11-7, 12-40

PRUNF command 11-7

pseudoregisters 7-16 to 7-17, 10-13 to 10-15

Index

Index-17

PSTEP command 11-7, 12-41
with breakpoints 11-7

ptr data type 7-23

pulldown menus, definition D-5

Q
quick profile 8-17, 12-38

QUIT command 2-18, 12-42

R
R keyword 4-10

R|W keyword 4-10

RAM initialization model 2-10

RAM keyword 4-10

RECONNECT command 12-42

reconnecting to emulator 6-13, 12-42

recording Command window displays 3-12 to 3-13,
12-20

reference/grouping operators 13-2

registers
CLK pseudoregister 6-12
displaying/modifying 7-13 to 7-17
pseudoregisters 7-16 to 7-17
referencing by name 13-4
reordering in the CPU window 7-14
single-precision floating-point 7-16

related documentation v to vi

relational operators
conditional execution 6-11
description 13-2

relative pathnames 12-17, A-3

RELOAD command 5-3, 12-42

repeating commands 11-13 to 11-14, 12-12

RESET command 12-43

resetting
emulator 2-6, 6-7
memory map 12-34
program entry point 12-43
simulator 6-7
target system 6-7, 12-43

RESTART (REST) command 12-43

Restart toolbar icon 6-2

restrictions
breakpoints 6-15
C expressions 13-4
debugging modes 2-17
memory mapping 4-4
profiling environment 8-4

RETURN (RET) command 12-43
Return toolbar icon 6-6
ripple-carry output signal, definition D-5
ROM keyword 4-10
run commands

HALT command 6-13, 12-25
PESC command 11-8, 12-36
PHALT command 11-8, 12-37
PRUN command 11-7, 12-40
PRUNF command 11-7
PSTEP command 11-7, 12-41
RUN command 6-4, 9-8, 10-10, 12-44
RUNF command 6-6, 10-10, 12-41, 12-45
summary 12-8

run cycles data 8-25
Run to Cursor context menu option 6-5
Run toolbar icon 6-4, 8-17, 9-8, 10-10
RUNB command

affecting analysis 10-10
description 12-45
using to count clock cycles 6-12

RUNF command 6-6, 12-41, 12-45
running programs

conditionally 6-11
continuous run 6-6
defining a starting point 6-2
halting execution 6-13
program entry point 6-2 to 6-3
running code in current C function 6-6
running entire program 6-4 to 6-5
single-stepping 6-8 to 6-10
through breakpoints 6-6
up to a specific point 6-5
while disconnected from the target system 6-6
with analysis enabled 9-8, 10-10

S
s (ASCII string) display format 7-22
–s debugger option 2-13, 5-3
SA command 12-45
Save Breakpoint File dialog box 6-18

Index

Index-18

Save List menu option (breakpoints) 6-18

Save Memory to COFF File dialog box 7-10

Save Profile File dialog box 8-28

Save Profile View File dialog box 8-27

saving breakpoint settings 6-18

saving memory contents to a COFF file 7-10

saving profile data 8-27 to 8-28

scalar type, definition D-5

scan path linker B-3
device type B-3
example B-4

SCONFIG command 12-46

screen-customization commands 12-4

scroll bar, definition D-5

scroll bar handle
definition D-5
description 5-5, 7-7

scrolling, definition D-5

SD command 12-46

section, definition D-5

Select Areas context menu option 8-8, 8-10, 8-11

selecting big-endian format (–me option) 2-11

SEND command 11-6, 12-46 to 12-47

serial ports, connecting an I/O port 4-14 to 4-15

SET command 11-4 to 11-5, 12-47 to 12-48
adding processors to a group 11-4, 12-48
changing the PDM prompt 11-19, 12-48
creating system variables 11-18 to 11-19, 12-48

concatenating strings 11-18
substituting strings 11-19

defining a group 11-4, 12-47
defining the default group 11-4, 12-47
listing all groups 11-5, 12-48
listing system variables 11-20

Set Up Hardware Breakpoints dialog box 10-8

SETF command 7-22 to 7-26, 12-49

setting a hardware breakpoint 10-8

setting a software breakpoint 6-15 to 6-16, 8-15

Setup menu
Alias Commands option 3-2
Breakpoints option

clearing a breakpoint 6-17
loading breakpoint settings 6-19
saving breakpoint settings 6-18
setting a breakpoint 6-16

Watch Variable option 6-12, 7-15, 7-19

shell options, debugger 2-2
shell program (cl6x) 2-2
short data type 7-23
side effects

definition D-5
description 7-5 to 7-6, 13-3
valid operators 7-6

$$SIM$$ constant 3-8
sim6x command, options 2-7, 2-10 to 2-13
sim6x.cfg, changing from the default file 2-11
siminit.cmd file 2-3, 2-13, 4-11, A-1
simulating interrupts 4-16
simulator

definition D-5
external interrupts 4-16 to 4-18
fast version

about 1-10
debugger features not supported 1-11

floating–point version
about 1-10
debugger features not supported 1-11

I/O memory 4-14 to 4-15, 12-31, 12-33
invoking the debugger 2-7 to 2-9

standalone 2-7
limited versions 1-10
resetting 6-7
$$SIM$$ constant 3-8

simulator configuration, naming an alternate
file 2-11

single-precision floating-point registers 7-16
Single Step C toolbar icon 6-9
single-step commands

CNEXT command 6-10, 12-18
CSTEP command 6-9, 12-18
NEXT command 6-10, 12-35
PSTEP command 12-41
STEP command 6-9, 12-53

single-step execution
and function calls 6-10, 12-18, 12-35, 12-53
assembly language code 6-8 to 6-9, 12-53
C code 6-8 to 6-20, 12-18
definition D-6
description 6-8 to 6-10
in parallel 12-41

single-step
commands, PSTEP command 11-7
execution, in parallel 11-7

single-stepping, interrupts ignored 6-8
SIZE command 12-50

Index

Index-19

sizeof operator 13-4

sizing a window
description 12-50
while moving it 12-34

SL command 12-50

SLOAD command
description 12-50
effect on Watch window 7-21
–s debugger option 2-13

software breakpoints. See breakpoints (software)

software reset 6-7

sorting profile data 8-23

SOUND command 12-51, C-2

space key, displaying data in structures or ar-
rays 7-20

SPAWN command 2-8 to 2-9, 12-51
options 2-9, 2-10 to 2-13

–n 2-9, 2-11, 12-51
–p 2-12

SPL device type B-3

SR command 12-52

SSAVE command 12-52

starting point for program execution 6-2 to 6-3

STAT command 11-8, 11-20, 12-48, 12-53

status bar, definition D-6

STEP command 6-9, 12-53

Step toolbar icon 6-9

stopping point for profiling
adding 8-15, 12-45
deleting 8-16, 12-46, 12-52
description 8-15 to 8-16
listing 12-50
resetting 8-16, 12-52

store instructions, displayed by the emulator 7-2

strategy for profiling 8-3

structures
direct reference operator 13-2
indirect reference operator 13-2

switch settings, I/O address space 2-12

symbol table
definition D-6
loading object code with global symbols only

(–v) 2-13
loading object code without (–v) 5-3
loading object code without (RELOAD) 12-42
loading without object code 2-13, 5-3, 12-50

symbolic addresses 7-8
SYSTEM command 3-5 to 3-13, 12-54

PDM version 11-16
system commands

ALIAS command, PDM version 11-15 to 11-16
DLOG command, PDM version 11-10
ECHO command, PDM version 11-12
entering from command line 3-5
entering several from system shell 3-6
IF/ELIF/ELSE/ENDIF com-

mands 11-10 to 11-12, 12-26 to 12-61
LOOP/BREAK/CONTINUE/ENDLOOP com-

mands 11-11 to 11-22, 12-28 to 12-29
PAUSE command 11-13
RECONNECT command 12-42
summary 12-6
SYSTEM command, PDM version 11-16
TAKE command, PDM version 11-9
UNALIAS command, PDM ver-

sion 11-15 to 11-16
system reset 6-7
system shell 3-5 to 3-13

T
–t debugger option

description 2-13
during debugger invocation 4-11, A-1
in defining a memory map 4-11

TAKE command
defining a memory map 4-11
description 12-55
executing log file 11-10
identify new initialization file (–t option) 2-13
PDM version 11-9
reading new memory map 4-13
returning to the original memory map 4-12

Target menu
Continuous Run option 6-6
Continuous Step option 6-10
Halt! option 6-5, 6-13
Next C option 6-10
Next option 6-10
Reset Target option 6-7
Restart option 6-2
Return option 6-6
Run Free option 6-6
Run option 6-4, 9-8, 10-10
Step C option 6-9
Step option 6-9

Index

Index-20

target system
’C6x 1-8
definition D-6
describing to the debugger B-1 to B-6

creating the board configuration
file B-2 to B-6

specifying the file B-6
translating the file B-5

disconnected from emulator 6-6
memory definition for debugger 4-1 to 4-18
resetting 6-7, 12-43

terminating the debugger 2-18, 12-42
text files, displaying 5-6
TMS320C6x device type B-3
Toggle Breakpoint context menu option 6-15, 6-17
toolbar, in basic display 1-3
totem-pole output, definition D-6
type casting 13-4
type checking 7-3

U
u (unsigned decimal) display format 7-22
uchar data type 7-23
uint data type 7-23
ulong data type 7-23
UNALIAS command 12-56

PDM version 11-15 to 11-16
UNIX, using with the PDM 2-8
unmarking areas 8-12
UNSET command 11-5, 12-56

deleting system variables 11-20
USE command 2-11, 12-57, A-3

V
–v debugger option 2-13
VAA command 12-57
VAC command 12-57
variables

aggregate values in Watch win-
dow 7-18 to 7-21, 12-19

assigning to the result of an expression 11-19,
12-13

determining type 7-3
displaying in different numeric format 13-5

variables (continued)
displaying/modifying 7-18 to 7-21
PDM 11-18 to 11-20
scalar values in Watch window 7-18 to 7-21

VERSION command 12-58
viewing profile data

description 8-20 to 8-26
displaying areas 8-24 to 8-25, 12-65 to 12-66
displaying different data 8-21 to 8-22,

12-65 to 12-66
sorting data 8-23, 12-65 to 12-66
viewing associated code 8-25 to 8-26

void expressions 13-4
VR command 12-58

W
W keyword 4-10
WA command

description 12-58
display formats 7-24, 12-59

Watch add dialog box 7-15, 7-19
watch commands

WA command 12-58
WD command 12-59
WR command 7-20, 12-61

Watch window
adding items 7-19 to 7-20, 12-58
closing 7-20, 12-61
definition D-6
deleting items 7-20, 12-59
description 1-4, 7-18 to 7-21
displaying additional data 7-20
editing values 7-5
effect of load commands 7-21
labeling watched data 12-58
naming 7-20
opening 7-19 to 7-20, 12-58

WD command 12-59
WHATIS command 7-3, 12-60
WIN command 12-60
windows

Analysis Statistics window, analysis interface
(emulator) 10-11

Analysis Statistics window (simulator) 9-9
Calls window 5-7
commands summary 12-4
CPU window 7-13 to 7-17
definition D-6

Index

Index-21

windows (continued)
description 1-4 to 1-6
Disassembly window 5-4 to 5-5
File window 5-6 to 5-8
Memory window 7-7 to 7-12
moving 12-34
Profile window 8-20 to 8-26
sizing 12-50
summary table, debugger 1-5
Watch window 7-18 to 7-21

WOM keyword 4-10

WR command 7-20, 12-61

X
x (hexadecimal) display format 7-22
–x debugger option 2-13
X Window System, displaying debugger on a differ-

ent machine 2-10
XCNT pseudoregister 10-14

Z
ZOOM command 12-61
zooming a window 12-61

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	FCC Warning
	Trademarks
	If You Need Assistance...

	Contents
	Figures
	Tables
	Overview of the Code Development and Debugging System
	Key Features of the Debugger
	About the C Source Debugger Interface
	Descriptions of the debugger windows and their contents

	Developing Code for the TMS320C6x
	Limited Versions of the Simulator
	Floating-point version of the simulator
	Fast version of the fixed-pointsimulator
	Debugger features not supported by the limited versions of the simulator

	About the Parallel Debug Manager (Emulator Only)
	Overview of the Debugging Process
	Accessing Online Help
	Accessing a list of help topics
	Accessing context-sensitive help
	Accessing help for debugger commands

	Getting Started With the Debugger
	Preparing Your Program for Debugging
	Debugging optimized code
	Profiling optimized code

	Identifying Alternate Directories for the Debugger to Search (D_DIR)
	Setting up D_DIR for Windows operating systems
	Setting up D_DIR for SPARC and HPUX operating systems

	Identifying Directories That Contain Program Source Files (D_SRC)
	Setting up D_SRC for Windows operating systems
	Setting up D_SRC for SPARC and HPUX operating systems

	Setting Up Default Debugger Options (D_OPTIONS)
	Setting up D_OPTIONS for Windows operating systems
	Setting up D_OPTIONS for SPARC and HPUX operating systems

	Resetting the Emulator
	Invoking the Debuggers and the PDM
	Invoking a stand-alone debugger
	Invoking multiple debuggers (emulator only)

	Summary of Debugger Options
	Clearing the .bss section (-c option)
	Displaying the debugger on a different machine (-d option)
	Identifying a new configuration file (-f option)
	Identifying additional directories (-i option)
	Selecting big-endian format (-me option)
	Identifying the processor to be debugged (-n option)
	Identifying the port address (-p option)
	Entering the profiling environment (-profile option)
	Loading the symbol table only (-s option)
	Identifying a new initialization file (-t option)
	Loading without the symbol table (-v option)
	Ignoring D_OPTIONS (-x option)

	Debugging Modes
	Auto mode
	Assembly mode
	Mixed mode
	Restrictions associated with debugging modes

	Exiting the Debuggeror the PDM

	Entering and Using Commands
	Defining Your Own Command Strings
	Defining an alias
	Defining an alias with parameters
	Editing or redefining an alias
	Deleting an alias
	Considerations for using alias definitions

	Entering Operating-System Commands From Within the Debugger
	Entering a single command from the debugger command line
	Entering several commands from a system shell

	Creating and Executing a Batch File
	Echoing strings in a batch file
	Executing commands conditionally in a batch file
	Looping command execution in a batch file
	Pausing the execution of a batch file
	Executing a batch file

	Creating a Log File to Reexecute a Series of Commands

	Defining a Memory Map
	The Memory Map: What It Is and Why You Must Define It
	Potential memory map problems

	Creating or Modifying the Memory Map
	Adding a range of memory
	Creating a customized memory type
	Deleting a range of memory
	Modifying a defined range of memory

	Enabling Memory Mapping
	A Sample Memory Map
	Defining and Executing a Memory Map in a Batch File
	Defining a memory map in a batch file
	Executing a memory map batch file

	Returning to the Original Memory Map
	Using Multiple Memory Maps for Multiple Target Systems
	Simulating I/O Space (Simulator Only)
	Connecting an I/O port
	Disconnecting an I/O port

	Simulating External Interrupts (Simulator Only)
	Setting up your input file
	Connecting your input file to the interrupt pin
	Disconnecting your input file from the interrupt pin
	Listing the interrupt pins and connecting input files

	Loading and Displaying Code
	Loading and Displaying Assembly Language Code
	Loading an object file and its symbol table
	Loading an object file without its symbol table
	Loading a symbol table only
	Loading code while invoking the debugger
	Displaying portions of disassembly
	Displaying assembly source code

	Displaying C Code
	Displaying the contents of a text file
	Displaying a specific C function
	Displaying code beginning at a specific point

	Running Code
	Defining the Starting Point for Program Execution
	Using the Basic Run Commands
	Running an entire program
	Running code up to a specific point in a program
	Running the code in the current C function
	Running code while disconnected from the target system (emulator only)
	Running code through breakpoints
	Resetting the simulator
	Resetting the emulator

	Single-Stepping Through Code
	Single-stepping through assembly language or C code
	Single-stepping through C code
	Continuously stepping through code
	Single-stepping through code and stepping over C functions

	Running Code Conditionally
	Benchmarking
	Halting Program Execution
	What happens when you halt the emulator

	Using Software Breakpoints
	Setting a software breakpoint
	Clearing a software breakpoint
	Clearing all software breakpoints
	Saving breakpoint settings
	Loading saved breakpoint settings

	Managing Data
	Where Data Is Displayed
	How the Emulator Displays Data for Load and Store Instructions
	Basic Commands for Managing Data
	Determining the type of a variable
	Evaluating an expression

	Basic Methods for Changing Data Values
	Editing data displayed in a window
	Editing data using expressions that have side effects

	Managing Data in Memory
	Changing the memory range displayed in a Memory window
	Opening an additional Memory window
	Displaying memory contents while you are debugging C
	Saving memory values to a file
	Filling a block of memory

	Managing Register Data
	Displaying register contents
	Accessing single-precision floating-point registers
	Accessing double-precision floating-point registers

	Managing Data in a Watch Window
	Displaying data in a Watch window
	Displaying additional data
	Deleting watched values

	Displaying Data in Alternative Formats
	Changing the default format for specific data types
	Changing the default format with data-management commands

	Profiling Code Execution
	Overview of the Profiling Environment
	Overview of the Profiling Process
	A profiling strategy

	Entering the Profiling Environment
	Defining Areas for Profiling
	Marking an area with a mouse
	Marking an area with a dialog box
	Disabling an area
	Reenabling a disabled area
	Unmarking an area
	Restrictions on profiling areas

	Defining a Stopping Point
	Setting a software breakpoint
	Clearing a software breakpoint

	Running a Profiling Session
	Running a full or a quick profiling session
	Resuming a profiling session that has halted

	Viewing Profile Data
	Viewing different profile data
	Sorting profile data
	Viewing different profile areas
	Interpreting session data
	Viewing code associated with a profile area

	Saving Profile Data to a File
	Saving the contents of the Profile window
	Saving all data for currently displayed areas

	Using Simulator Memory System Analysis
	Major Functions of Simulator Memory System Analysis
	Set up event breakpoints
	Count system events

	Overview of the Analysis Process
	Enabling Memory System Analysis
	Defining the Conditions for Analysis
	Description of available system events
	Counting system events
	Setting event breakpoints
	Removing a defined count or break event

	Running Your Program
	Viewing the Analysis Data
	Interpreting the information in the Analysis Statistics window
	Resetting the event counters

	Summary of Memory System Analysis Commands
	event_enable (enable specified event)
	event_disable (disable specified event)
	event_break (set breakpoint on specified event)
	event_counter_start (count each occurrence of specified event)
	event_counter_reset (reset counter for specified event)
	event_reset (disable and clear configuration for all events)
	event_list (list configuration of all events)

	Entering Analysis Commands Through a Batch File

	Monitoring Hardware Functions With the Emulator Analysis Module
	Major Functions of the Analysis Module
	Overview of the Analysis Process
	Enabling the Analysis Module
	Defining the Conditions for Analysis
	Counting events
	Enabling the external counter
	Setting hardware breakpoints
	Setting up the EMU0/1 pins to set global breakpoints

	Running Your Program
	How to run the entire program
	How the Run Benchmarks (RUNB) command affects analysis

	Viewing the Analysis Data
	Interpreting the information in the Analysis Statistics window

	Creating Customized Analysis Commands
	Summary of Analysis Pseudoregisters
	AEN(enable analysis)
	ABE (configure hardware breakpoints)
	ADR (program address breakpoint value)
	ACE (configure analysis counter events)
	ICNT (internal counter value)
	XCNT (external counter value)
	AST (analysis status)

	Using the Parallel Debug Manager
	Identifying Processors and Groups
	Assigning names to individual processors
	Organizing processors into groups

	Sending Debugger Commands to One or More Debuggers
	Running and Halting Code
	Halting processors at the same time
	Sending ESCAPE to all processors
	Finding the execution status of a processor or a group of processors

	Entering PDM Commands
	Executing PDM commands from a batch file
	Recording information from the PDM display area
	Controlling PDM command execution
	Echoing strings to the PDM display area
	Pausing command execution
	Using the command history

	Defining Your Own Command Strings
	Entering Operating-System Commands
	Understanding the PDM s Expression Analysis
	Using System Variables
	Creating your own system variables
	Assigning a variable to the result of an expression
	Changing the PDM prompt
	Checking the execution status of the processors
	Listing system variables
	Deleting system variables

	Evaluating Expressions

	Summary of Commands
	Functional Summary of Debugger Commands
	Managing multiple debuggers
	Changing modes
	Managing windows
	Customizing the screen
	Displaying files and loading programs
	Displaying and changing data
	Performing system tasks
	Managing breakpoints
	Memory mapping
	Running programs
	Profiling commands
	Memory system analysis commands (simulator only)

	Alphabetical Summary of Debugger and PDM Commands
	?
	!
	addr
	alias
	bl
	br
	cls
	cnext
	disp
	dlog
	elif
	else
	file
	fill
	help
	if/else/endif
	line
	loop/endloop
	ma
	mc
	md
	mix
	ml
	next
	pause
	pinc
	pind
	profile
	prompt
	pstep
	quit
	return
	run
	sa
	sconfig
	set
	setf
	size
	spawn
	sr
	step
	system
	take_abort
	unalias
	vac
	version
	wd
	whatis
	zoom

	Summary of Profiling Commands

	Basic Information About C Expressions
	C Expressions for Assembly Language Programmers
	Using Expression Analysis in the Debugger
	Restrictions
	Additional features

	What the Debugger Does During Invocation
	Where the debugger looks for files

	Describing Your Target System to the Debugger
	Step 1: Create the Board Configuration Text File
	Step 2: Translate the Configuration File to a Debugger-Readable Format
	Step 3: Specify the Configuration File When Invoking the Debugger

	Debugger Messages
	Associating Sound With Error Messages
	Alphabetical Summary of Debugger Messages
	Alphabetical Summary of PDM Messages
	Additional Instructions for Expression Errors
	Additional Instructions for Hardware Errors

	Glossary
	Index

